Team:USTC-Software/Project/Method
From 2013.igem.org
Methodologies
To simulate and analyze a genetic regulatory network (GRN), we need to build an objects’ array to store the complete information of each gene. It contains regulation relationships between genes, sequences of genes, sequences of promoters and so on. However, it’s hard to find an appropriate database online containing all information we need in a simple file. RegulonDB has downloadable files about the regulation between transcription factors (TF) and genes. Files about genetic information, transcription unit information and promoter information can also be downloaded from the RegulonDB. All those files have been put into file “source data” in the root directory of our software. They contain all information the simulation needs and we use fetching module to achieve data extraction and integration. There are four steps: fetch regulation relationships, fetch gene information, fetch promoter information and integrate information above.
Fetch Database
Our software integrates all information we picked out about genes and generates a file named “all_info” —— all information about genes —— for the output graphical interface’s reading. In the meanwhile, the array of objects containing all information has been stored in computer memory which greatly improve the computing speed of our software. The format of all_info database: No. promoter_sequence gene_sequence gene_name ID left_position right_position promoter_name description The fetching module generates three files: old_GRN, all_info and uncertain_database.
Alignment Analyze
New Network Construction
The behavior similarity of two units can be described by the dot product of two regulated vectors or two regulating vectors. A more intuitive way is using the vectorial angle to measured the similarity of two behaviors. But there are some zero vectors in the gene regulatory network which usually means the units either play the role of target or the regulator. [Pic. 4 GRN matrix, target vector, regulator vector and their dot product] We have tested the hypothesis by analyzing all 1748 regulation units of Escherichia coli, K-12, recorded in RegulonDB[FIXME: website link here]. By pairwise comparison of all these units, about 1.6 million sets of data was obtained. Each set of data consists of promoter sequence similarity, protein coding sequence similarity and behavior similarity. We hope to find some structure in the data that supports our hypothesis. And it is lucky enough to find there is a tendency showing the relationship between sequence similarity and behavior similarity(Pic. 2). [Pic. 2 Sequence similarity and behavior similarity] Sequence similarity is set as x axis and behavior similarity is set as y axis. Obviously sequence similarity is continuous-valued (from 0 to 1) and behavior similarity is discrete-valued. Values of behavior similarity determined by the dimension(N) of the vector are between -N and N. According to the result, promoter sequence similarity mainly distributes[FIXME] from 0.4 to 0.6, protein coding sequence similarity mainly distributes from 0 to 0.7 and behavior similarity mainly distributes from -3 to 5. As it is shown in Picture 4, high behavior similarity is partial to high sequence similarity. Peak value of behavior similarity, 17, appears where sequence similarity is 0.537. When behavior similarity value is fixed, for example, set behavior similarity as 8, it is obvious that the higher the sequence similarity is, the more intensive the dots are.
Network Model
Network analysis includes finding stable condition of network, adding new gene, finding new stable condition and changes from original condition to new condition. We use densities of materials to describe network condition. If all material densities are time-invariant, we can say the network condition is stable.
Predict
In some cases, importing exogenous gene is for enhancing or suppressing the expression of some specific genes in engineered bacteria itself. But it is hard to choose an appropriate regulatory gene. Our software analyzes the GRN forward as well as simulates by optimization algorithm backward for giving a reference of choosing to the users. Our software not only focused on the direct regulation but also focused on the global GRN. In the same time, controlling the expression of multiple genes in network has been realized by global prediction. What’s more, Particle Swarm Optimization (PSO) Algorithm makes it possible.