Team:UFMG Brazil/Modeling
From 2013.igem.org
\[\begin{aligned}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{aligned} \]
\[\begin{aligned}
$M$ is TMAO.
$T$ is TorT.
$TM$ is the complex of T and M.
$S$ is TorS.
$STM$ is the complex of S and TM.
$R$ is TorR.
$R^{ *}$ is TorR Phosophorilated.
Reactions:
$M+T{{k_{1} \atop\displaystyle\longrightarrow} \atop {\displaystyle\longleftarrow \atop k_{-1}}}TM$
$2TM+S{{k_{2} \atop\displaystyle\longrightarrow} \atop {\displaystyle\longleftarrow \atop k_{-2}}}STM$
$STM+R{{k_{3} \atop\displaystyle\longrightarrow} \atop {\displaystyle\longleftarrow \atop k_{-3}}} X {{k_{cat}\atop\longrightarrow} \atop {\quad \atop \quad }}R^{ *} + STM$
$R^{ *} + P {{\displaystyle\longrightarrow} \atop {\displaystyle\longleftarrow}} PR^{ *}$
\begin{eqnarray}
\begin{cases}
{d M(t)\over d t}&=& -k_1 \cdot M\cdot T + k_{-1}\cdot TM\\\\
\\\\
{d T(t)\over d t}&=& -k_1 \cdot M\cdot T + k_{-1}\cdot TM\\\\
\\\\
{d TM(t)\over d t}&=& k_1 \cdot M\cdot T - k_{-1}\cdot TM - k_2\cdot TM^{2} \cdot S + k_{-2} \cdot STM\\\\
\\\\
{d S(t)\over d t}&=& -k_2 \cdot S\cdot TM^{2} - k_{-1}\cdot TM - k_2\cdot TM^{2} \cdot S + k_{-2} \cdot STM\\\\
\\\\
{d STM(t)\over d t}&=& k_2 \cdot TM^{2} \cdot S - k_{-2}\cdot STM \\\\
\\\\
{d R^{ *}(t)\over d t}&=& k_{cat}\cdot STM \over{k_m + STM}\\\\
\\\\
{d mRNA(t)\over d t}&=& {\alpha \cdot R^{ *^{\gamma}} \over{\beta + R^{ *^{\gamma}}}} - \mu \cdot mRNA\\\\
\\
\end{cases}
\end{eqnarray}
\end{aligned}
\]
If you choose to include a Modeling page, please write about your modeling adventures here. This is not necessary but it may be a nice list to include.