Team:Kyoto/ProjectTuring

From 2013.igem.org

Revision as of 17:04, 27 September 2013 by Yt (Talk | contribs)

count down

Contents

Turing Model
-the problems between wet and dry-

Introduction

On the Earth, there are various animals which have various patterns on their skin. The formation mechanism of this pattern have not been explained by any verified theories, although many hypothesis are proposed. Among these hypothesis, there is a model pattern called Turing pattern proposed by A. Turing the famous mathematician *1. S. Kondo [citation needed*2] and some other researchers [citation needed*3] suggests that some creatures’ pattern can be explained by Turing’s model. Here we will explain how the Turing pattern is expressed by his model step by step.
Let’s take a look on simple hypothetical pattern formed by just two colors. Creatures’ epidermal pattern is expressed on the cell. Let’s assume that the pattern is formed by cells in different state α and β for example. Cell in state α expresses color 1 and changes close cell in state β into state α. Cell in state β expresses color 2 and change close cell in state α into state β, and remote cell in state β into cell in state α. For convenience, hereafter we call the cell in the state of α by {α} and cell in the state of β by {β}. Then, we will take a look on the system that two cells {α} and {β} are existing uniformly and both of the cells are in the equilibrium state of interaction. Now suppose that the density of {α} and {β} fluctuated in somewhere in the system. Assume that the density of cell {β} increases like the cells in center of figure 1. At first, the center {β} changes close {α} into {β}. And next same {β} changes remote {β} into {α}. Then remote {α} changes close {β} into {α}. The pattern is formed as this interaction continues.
Like this, a striped pattern is formed from close-and-remote interaction between two states of cell. Seeing this close-and-remote interaction separately, close interaction can be explained as positive feedback reaction in the aspects of polarization. Conversely, remote interaction can be explained as negative feedback reaction.

Experiments

We focused on the constants "Ki, Ki’, Ki’’" in these formula. These are took as a given as "always fixed in any point" to Turing pattern. However, in fact, is it true that Ki is always fixed in any point with Turing pattern formed by E. coli? We thought it is not always true in wet work because E. coli makes A and B. In other words, increase or decrease speed of amount of A and B in a certain point depends on E. coli dencity in the point.
As long as E. coli is growing not uniformly until a steady state, it must be generated E. coli density difference between each point. This E.coli density difference makes "Ki, Ki’, Ki’’" change between each point.
Can we ignored "Ki, Ki’, Ki’’" difference? To confirm this, we established these assay.

1. Confirm expression amount of GFP in both a steady state and a non-steady state with plated E. coli by common method.
2. Confirm expression amount of GFP in E. coli that is activated other protein by IPTG and not activated E.coli as negative control
3. Confirm if expression amount of GFP depends on copy number with construction in Assay2.

Discussion

このように、通常のメソッドで大腸菌をまくと、GFPの発現量が非常にまばらになる。これは大腸菌をまく際に十分均一にまく事ができていないからである。これほどまばらな発現量の状態だと、シャーレ上に模様を形成するために必要な最大面積のcell unitを仮定したときであってもcell unit内での平均GFP発現量の差異が誤差の範囲とならない。Patternを形成するために十分小さなcell unitを仮定した時に、cell unit内の平均GFP発現量が誤差として扱える程度まで均一にまかなければならないため、ここから更にメソッドを洗練させていく必要がある。その為にも、wetが繰り返し大腸菌をまく作業を行い、dryがその結果を毎回確認して、平均GFP発現量が誤差の範囲となる最小のcell unit面積を求め、そのデータをwetに還元し、wetがメソッドの精度をあげていかなければならない。このようにして、wetとdryとが互いを十分理解し、歩み寄ることによってより正確で信頼できるメソッドの構築ができる。
見てきたとおり、細胞間での回路を考えると、考えなければならないファクターとして菌体密度という要素が増える。細胞内での回路を考えた場合、考えているものは一細胞内なので、菌体密度の要素を考えずに済む。よって、その要素のない回路を以降考えてみたい。

Conclusion

 以上にTuring Patternを例として見てきたように、互いの認識や理解不足によって、wetとdryの間で結果が一致しないことが往々にしてある。両者が情報提供や説明をより密に行いあえば、wetはdryの近似に近い状況を作れるかもしれないし、式に必要なパラメータの定量データを出して与えられるかもしれない。それをもとにすると、dryはより現実の状況によく対応する式を立て、より適切な単純化を行ったシミュレーションができるかもしれない。その予測データを受け取れば、wetの実験系はより深いところまで探れるようなものになるだろう。今回の我々の例のように、成功しない実験の運命を変えられるかもしれない。そうなれば、生物学の進歩はより早くなるだろう。

As we showed the example ’Turing Pattern’, the results of wet lab and dry lab are often different because of their lack of understanding and appreciation each other. If both of them provide more information and closely discuss together, wet lab may be able to make an experimental system which imitates the system dry lab approximated to the real system. And wet lab provide quantified dates of a value which are necessary to formularize. If dry lab get these dates, they can create formulae which are well adapted to real system and run well simplified simulation. And if wet lab receive the anticipation date, they will be able to find more interesting results. When dry lab and wet lab join hands like this example ’Turing Pattern’, you can overthrow the future that some experiments should fail. Then, biology would evolve faster.