Team:Paris Bettencourt/Notebook/Phage Sensor/Thursday 18th July.html
From 2013.igem.org
Revision as of 16:44, 5 August 2013 by Marguerite (Talk | contribs)
Phage Sensor
ASDFThursday 18th July
Calculating the transformation efficiency for the E.coli NEB and E.coli NNEB strains.
· 20 µL of cell culture was inoculated in 200 µL of LB, where 0.5 µL of DNA sample (?) was added, giving the total volume of 220.5 µL.· After the heat shock transformation 10 µL of the culture was diluted in 90 µL of LB, giving the 10-1 dilution (d); then 10 µL of this dilution was transferred in 90 µL of LB, giving the 10-2 dilution. 10 µL of each dilution (v) was plated on ampicillin media and left for incubation (24 h, 37 ̊C).
· After incubation, colonies were counted:
NEB | NNEB | |
10-¹ | 0 | 433 |
0 | 368 | |
Average | 0 | 400.5 |
10-¹ | 0 | 62 |
0 | 40 | |
Average | 0 | 51 |
Obviously, NEB strain was not transformed and only NNEB was included in further caluculations.
· The number of the transformed colony forming units per mL of the culture was calculated following the formula: colony number / d*v.
Calculation from the 10-1 dilution: 0.4 * 109 CFU/mL
Calculation from the 10-2 dilution: 0.51 * 109 CFU/mL
· The transformation efficiency was calculated by dividing the number of transformed colony forming units (CFU) by the amount of the DNA used (mDNA).
CFU1 = 0.4 * 109 CFU/mL * 0.22 mL (total V of the transformation culture) = 0.088*109 CFU
CFU2 = 0.51 * 109 CFU/mL * 0.22 mL = 0.1122*109 CFU
The concentration of the DNA solution which was used was 0.323 µg/µL, while the total DNA mass which was added to the transformation culture was: 0.323 µg/µL * 0.5 µL = 0.1615 µg.
So the transformation efficiency, calculated from the 10 times diluted (TE1) and 100 times diluted (TE2) cultures is:
TE1 = CFU1/mDNA = 0.55 * 109 CFU/µg
TE2 = CFU2/mDNA = 0.69 * 109 CFU/µg
TE1 and TE2 are almost the same