Team:Dundee/Project

From 2013.igem.org

(Difference between revisions)
 
(25 intermediate revisions not shown)
Line 1: Line 1:
 +
{{:Team:Dundee/Templates/Navigationbar}}
 +
<html>
<html>
<html lang="en">
<html lang="en">
-
  <head>
 
-
    <meta charset="utf-8">
 
-
    <title>iGEM Dundee 2013 &middot; Toxi-Mop</title>
 
-
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 
-
    <meta name="description" content="">
 
-
    <meta name="author" content="">
 
-
 
-
    <!-- CSS -->
 
-
    <link href=' http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>
 
-
    <link href="http://www.kyleharrison.co.uk/igem/assets/css/bootstrap.css" rel="stylesheet">
 
-
    <link href="http://www.kyleharrison.co.uk/igem/assets/css/style.css" rel="stylesheet">
 
-
 
-
      <style type="text/css">
 
-
 
-
 
-
      #globalWrapper{
 
-
        font-size:14px;
 
-
      }
 
-
 
-
      #content{
 
-
        width:auto;
 
-
      }
 
-
 
-
      #contentSub, #search-controls, .firstHeading, #footer-box, #catlinks, #p-logo {
 
-
          display:none;}
 
-
      #top-section {
 
-
          border: none;
 
-
          height: 0px;}
 
-
      #content {
 
-
          border: none;}
 
-
 
-
      /* MediaWiki Top Menu */
 
-
 
-
      #menubar {
 
-
          font-size: 65%;
 
-
          top: -14px;
 
-
      display:none;
 
-
      }
 
-
      .left-menu:hover {
 
-
          background-color: transparent;}
 
-
      #menubar li a {
 
-
          background-color: transparent;}
 
-
      #menubar:hover {
 
-
          color: white;}
 
-
      #menubar li a {
 
-
          color: transparent;}
 
-
      #menubar:hover li a {
 
-
          color: white;}
 
-
      #previewnote {
 
-
        display:none;
 
-
      }
 
-
 
-
 
-
      /* Sticky footer styles
 
-
      -------------------------------------------------- */
 
-
 
-
      /* Wrapper for page content to push down footer */
 
-
      #wrap {
 
-
        min-height: 100%;
 
-
        height: auto !important;
 
-
        height: 100%;
 
-
        /* Negative indent footer by it's height */
 
-
        margin: 0 auto -60px;
 
-
      }
 
-
 
-
      /* Set the fixed height of the footer here */
 
-
      #push,
 
-
      #footer {
 
-
        height: 60px;
 
-
      }
 
-
      #footer {
 
-
        background-color: #f5f5f5;
 
-
      }
 
-
 
-
      /* Lastly, apply responsive CSS fixes as necessary */
 
-
      @media (max-width: 767px) {
 
-
        #footer {
 
-
          margin-left: -20px;
 
-
          margin-right: -20px;
 
-
          padding-left: 20px;
 
-
          padding-right: 20px;
 
-
        }
 
-
      }
 
-
 
-
      /* Custom page CSS
 
-
      -------------------------------------------------- */
 
-
      /* Not required for template or sticky footer method. */
 
-
 
-
      #wrap > .container {
 
-
        padding-top: 60px;
 
-
      }
 
-
      .container .credit {
 
-
        margin: 20px 0;
 
-
      }
 
-
 
-
      code {
 
-
        font-size: 80%;
 
-
      }
 
-
 
-
    </style>
 
-
    <!--
 
-
    <link href="http://www.kyleharrison.co.uk/igem/assets/css/bootstrap-responsive.css" rel="stylesheet">
 
-
-->
 
-
    <!-- HTML5 shim, for IE6-8 support of HTML5 elements -->
 
-
    <!--[if lt IE 9]>
 
-
      <script src="/js/html5shiv.js"></script>
 
-
    <![endif]-->
 
-
 
-
    <!-- Fav and touch icons -->
 
-
    <link rel="apple-touch-icon-precomposed" sizes="144x144" href="../assets/ico/apple-touch-icon-144-precomposed.png">
 
-
    <link rel="apple-touch-icon-precomposed" sizes="114x114" href="../assets/ico/apple-touch-icon-114-precomposed.png">
 
-
      <link rel="apple-touch-icon-precomposed" sizes="72x72" href="../assets/ico/apple-touch-icon-72-precomposed.png">
 
-
                    <link rel="apple-touch-icon-precomposed" href="../assets/ico/apple-touch-icon-57-precomposed.png">
 
-
                                  <link rel="shortcut icon" href="../assets/ico/favicon.png">
 
-
  </head>
 
-
 
-
  <body>
 
-
 
-
    <!-- Part 1: Wrap all page content here -->
 
-
    <div id="wrap">
 
-
 
-
      <!-- Fixed navbar -->
 
-
      <div class="navbar navbar-fixed-top">
 
-
        <div class="navbar-inner">
 
-
 
-
          <div class="container_top" style="margin-left:100px;">
 
-
            <button type="button" class="btn btn-navbar" data-toggle="collapse" data-target=".nav-collapse">
 
-
              <span class="icon-bar"></span>
 
-
              <span class="icon-bar"></span>
 
-
              <span class="icon-bar"></span>
 
-
            </button>
 
-
            <a class="brand" href="#">Dundee iGEM 2013</a>
 
-
            <div class="nav-collapse collapse">
 
-
              <ul class="nav">
 
-
                <li class="active"><a href="./index.html">Home</a></li>
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="./Team/meettheteam.html">Meet the Team</a></li>
 
-
                    <li><a href="https://igem.org/Team.cgi?id=1012">Team Information</a></li>
 
-
                    <li><a href="./Team/Awknowledgements.html">Acknowledgements</a></li>
 
-
                    <li><a href="./Team/Attributions.html">Attributions</a></li>
 
-
                    <li><a href="./Gallery/Gallery.html">Gallery</a></li>
 
-
                    <li><a href="#">Contact</a></li>
 
-
                  </ul>
 
-
                </li>
 
-
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="./Project/Overview.html">Project Overview</a></li>
 
-
                    <li><a href="#">Notebook</a></li>
 
-
                    <li class="divider"></li>
 
-
                    <li class="nav-header">Lab</li>
 
-
 
-
                    <li><a href="#">Lab Overview</a></li>
 
-
                    <li><a href="#">Detector</a></li>
 
-
                    <li><a href="#">Sensor</a></li>
 
-
                    <li class="divider"></li>
 
-
                    <li class="nav-header">Modelling </li>
 
-
                    <li><a href="./Project/MathOverview.html">Modelling Overview</a></li>
 
-
                    <li><a href="./Project/MathOverview.html">Theory</a></li>
 
-
                    <li class="divider"></li>
 
-
                    <li class="nav-header">Software</li>
 
-
                  <li><a href="#">Software Overview</a></li>
 
-
                  <li><a href="#">Mop-toppus</a></li>
 
-
                  <li><a href="#">Toxi-Tweet</a></li>
 
-
                  </ul>
 
-
                </li>
 
-
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="#">Our Biobricks</a></li>
 
-
                    <li><a href="#">Improvements</a></li>
 
-
                  </ul>
 
-
                </li>
 
-
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Safety <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="#">General Safety</a></li>
 
-
                    <li><a href="#">Safety in the Lab</a></li>
 
-
                    <li><a href="#">Public Safety and Awareness</a></li>
 
-
                    <li><a href="#">Enviromental Safety</a></li>
 
-
                  </ul>
 
-
                </li>
 
-
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Human Practice <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="#">Overview</a></li>
 
-
                    <li><a href="#">Collaboration</a></li>
 
-
                    <li><a href="#">Outreach</a></li>
 
-
                    <li class="divider"></li>
 
-
                    <li class="nav-header">Media</li>
 
-
                    <li><a href="http://www.youtube.com/channel/UCvHOQ9Y1PqKInj6iCwLqTJw/feed?view_as=public">Youtube Channel</a></li>
 
-
                    <li><a href="#">Graphic Novel</a></li>
 
-
                    <li><a href="http://www.flickr.com/photos/97927329@N05/">Flickr</a></li>
 
-
                    <li><a href="#">Video Game</a></li>
 
-
                    <li class="divider"></li>
 
-
                    <li class="nav-header">Social Media</li>
 
-
                    <li><a href="https://www.facebook.com/DundeeiGem2013">Facebook</a></li>
 
-
                    <li><a href="https://twitter.com/DundeeiGEMTeam">Twitter</a></li>
 
-
                    <li><a href="https://plus.google.com/u/0/116223511035478208262/posts?hl=en_US">Google+</a></li>
 
-
                   
 
-
                  </ul>
 
-
                </li>
 
-
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Sponsors <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="#">Our Sponsors</a></li>
 
-
                    <li><a href="#">Sponsorship Levels</a></li>
 
-
                  </ul>
 
-
                </li>
 
-
 
-
 
-
              </ul>
 
-
            </div><!--/.nav-collapse -->
 
-
          </div>
 
-
        </div>
 
-
      </div>
 
       <!-- Begin page content -->
       <!-- Begin page content -->
Line 230: Line 9:
       <!-- Title -->
       <!-- Title -->
       <div class="page-header">
       <div class="page-header">
-
           <h2><b>Toxi Mop </b> - Splash, and the Toxins gone!</h2>
+
           <h2><b>Background</b> </h2>
         </div>
         </div>
       <!-- Title End -->
       <!-- Title End -->
-
 
-
<div class="span12" style="margin-left:0px;">
 
-
 
-
            <!-- a very basic slider, note the structure of each item. you can add too but not take away (classes and id's that is) -->
 
-
            <div id="slider" class="carousel slide">
 
-
 
-
              <div class="carousel-inner">
 
-
 
-
                <div class="item active"><!-- add the active class to any slider you want shown first -->
 
-
                  <img src="http://farm8.staticflickr.com/7328/9236704273_7e9d405c4e_o.jpg">
 
-
                </div>
 
-
 
-
                <div class="item">
 
-
                  <img src="http://farm3.staticflickr.com/2832/9191526631_b24b252cdf_o.jpg">
 
-
                </div>
 
-
 
-
                <div class="item">
 
-
 
-
                  <img src="http://placehold.it/1000x300/8066DB/000000&text=Project">
 
-
                </div>
 
-
 
-
                <div class="item">
 
-
                  <img src="http://placehold.it/1000x300/EB3C8B/000000&text=Our Team">
 
-
                </div>
 
-
 
-
              </div>
 
-
 
-
              <!-- the controls for our sliders -->
 
-
              <a class="left carousel-control " href="#slider" data-slide="prev">&lsaquo;</a>
 
-
              <a class="right carousel-control " href="#slider" data-slide="next">&rsaquo;</a>
 
-
 
-
            </div>
 
-
      </div>
 
-
 
       <div class="row">
       <div class="row">
       <!-- the main content -->  
       <!-- the main content -->  
-
         <div class="span6" style="text-align:justify">
+
         <div class="span12" style="text-align:justify;margin-top:-30px;">
-
        <h2 style="margin-top:-10px;"> The Microcystin Monster </h2>
+
<p>Algae are photosynthetic organisms which live in aquatic environments. Cyanobacteria, also known as blue-green algae, are prokaryotes that are responsible for the majority of photosynthesis on Earth. During the hot and sunny summer months we experience a phenomenon known as an algal bloom. This is a spectacular increase in the size of the algal population in a water body as the algae take advantage of the seasonal spike in light and warmth. With increased amounts of nutrients leaching into water due to agriculture, blooms are becoming more common. Aside from affecting the environment they occur in, algae can be dangerous for humans as many species of algae produce toxins. </p>
-
        <p> Algal blooms are an ever-growing problem in freshwater systems. At the Beijing Olympics 2008, 10,000 people were hired to clean up the extensive algal bloom in time for the sailing regatta. The main concern is the level of a toxin called microcystin, which is released by cyanobacteria when they die and lyse. <br><br>Currently, the method of detection takes a day to produce results, so our aim as a team is to develop a 60 minute microcystin detection system, as well as a method to combat the rising levels of the toxin in lakes, ponds, etc. The iGEM Dundee team were inspired to act on this problem due to not only its effect on the local freshwater reservoirs, but worldwide. </p>
+
-
        <br>
+
-
        </div>
+
-
        <div class="span6">
+
<h2>The Perfect Synthetic Biology Project</h2>
 +
<p>In the beginning, we thought: what makes a perfect synthetic biology project?
 +
First you have to have your idea. Rather than showing this to the public at the end of the project, we thought it would be a much better idea to include them in the project from the very start. In this way, they can bring up any concerns they have and we can try to address those throughout the project through our Human Practices.<br><br>
 +
 
 +
With this, our project becomes a lot less about consultation and a lot more about inclusion.
 +
For this reason, we feel that our team has become a lot more than the ten of us. These extra team members will be introduced throughout the project.</p>
 +
<center><img src="https://static.igem.org/mediawiki/2013/1/1e/Somethingbeautiful.png"></img></center>
-
              <iframe src="http://player.vimeo.com/video/69609812?color=c9ff23" width="460" height="281" frameborder="0" webkitAllowFullScreen mozallowfullscreen allowFullScreen></iframe> <p><a href="http://vimeo.com/69609812">iGEM Dundee - Introduction to Synthetic Biology</a> on <a href="https://vimeo.com">Vimeo</a>.</p>
 
           </div>
           </div>
Line 288: Line 35:
       <div class="row" style="margin-top:20px;">
       <div class="row" style="margin-top:20px;">
-
         <div class="span6" style="text-align:justify">
+
         <div class="span12" style="text-align:justify">
-
           <h2 style="margin-top:-10px;"> Save the Janitor, Save the world! </h2>
+
           <h2>ToxiMop Project</h2>
-
           <p> Microcystin, a toxin released by Microcystis aeruginosa, is harmful to mammals due to its ability to latch on to the human protein PP1, thus ceasing its operation.
+
           <P>In order to tackle these toxic algal blooms, our project consisted of 5 subdivisions which come together to reach the best solution;</p>
-
          We are exploiting the ability of the human protein phosphatase (PP1) to covalently bind to microcystin, in order to develop a biological mop ‘janitor’ to rid algal bloom water of the toxin. <br><br>By changing domains on receptors on the cell surface of e.coli and b.subtilis, we plan to develop a method of microcystin detection. Thirdly, iGEM Dundee are creating ‘Moptopus’; a remote environmental monitoring device which is designed to detect pH, temperature, light, dissolved oxygen in H2O and even has a robotic eye. Moptopus can be controlled online and can even send tweets to alert the public whenever an algal bloom is imminent.
+
          </div>
-
</p>
+
          <div class="span3">
 +
          <ol style="padding-left:15px">
 +
          </br></br></br></br></br>
 +
          <li>Mopping</li>
 +
          <li>Detecting</li>
 +
          <li>Monitoring</li>
 +
          <li>Informing</li>
 +
          <li>Mathematical Modelling</li>
 +
          </ol>
 +
          </div>
 +
 
 +
          <div class="span9">
 +
          <center><img src="https://static.igem.org/mediawiki/2013/thumb/7/75/Overview_image.jpg/800px-Overview_image.jpg" ></img></center>
 +
          </div>
         </div>
         </div>
-
        <div class="span6" style="text-align:justify">
+
      <!-- Row two -->
 +
      <div class="row" style="margin-top:-20px;">
-
         <h2 style="margin-top:-10px;"> Unmasking the Monster </h2>
+
         <div class="span12" style="text-align:justify">
-
        <p>
+
      <h2>1. Mopping</h2>
-
        The public generally considers synthetic biology as an immoral concept, although if you imagine it as an episode of Scooby Doo, it doesn’t seem so bad; everyone is scared of this unknown monster, but underneath this mask is just a janitor. In the case of our project ToxiMop, we are using a ‘janitor bacterium’ to mop up the microcystin toxin from freshwater reservoirs!
+
      <p>We are to focussing on one hepatotoxin called microcystin, a cyclic non-ribosomal peptide that binds covalently and irreversibly to protein phosphatases in mammalian bodies resulting in an inactivation of the protein. <br><Br>
-
        </p>
+
-
        <h2 style="margin-top:0px;"> Simply playing with the Universes Lego Kit </h2>
+
      The study of biochemical processes in human cells is one of the most heavily-researched scientific fields. However, it is not often that scientists exploit the biochemical potential that our bodies offer in order to create new technologies for environmental remediation. We have decided to exploit the human protein-phosphatase 1 (PP1)–microcystin interaction to create a bacterium that will sequester microcystin and prevent its toxic action.<br><br>
-
          <p>
+
-
          What comes to people's mind when they hear the term 'synthetic biology'? Many people don't know what it is, or have an ambiguous idea that it is something dangerous, potentially immoral. It can be thought of as playing with the universe's lego kit. Building with what is already here, naturally, biologists attempt to create better biological systems and machinery to advance life on earth. </p>
+
-
        </div>
+
      Microcystin cannot freely diffuse through the inner membrane of bacteria but can sufficiently enter the outer membrane. Therefore we engineered the chassis organism Eschericha coli to export human protein-phosphatase 1 (PP1) to its periplasmic compartment. By doing this we have created a biological mop for microcystin that we call the ToxiMop.</p>
-
       </div>
+
       <h2>2. Detecting</h2>
 +
      <p>The current procedures for detecting algal toxins involve HPLC (High Performance Laser Chromatography) analysis of contaminated water bodies, and takes approximately 24 hours. Bacterial populations are so dynamic that in the interim between taking a sample for testing and getting a result, the amount of toxin present may have changed dramatically. In addition, this kind of analysis is expensive, so often water bodies will not be tested unless there is already some evidence of algal growth.</p>
 +
      <p>Based on the protein – toxin interaction explained above we also constructed a toxin detection system. E. coli’s membrane-bound osmolarity sensor, EnvZ, was modified to include the PP1 protein. The idea was that upon binding to the microcystin, EnvZ is activated and triggers luminescence by upregulating expression of a fluorescent reporter gene. The luminescence can then be recognised by our monitoring device – the Moptopus.</p>
-
       <!-- Row Three -->
+
       <h2>3. Monitoring</h2>
-
       <div class="row" style="margin-top:20px;">
+
       <p>Feedback from the biological detector would be recognised by a modular hardware device called the Moptopus. The Moptopus contains a pH meter, dissolved oxygen meter, thermometer, light sensor, humidity meter and a camera. Implementing these sensors allows us to calculate the possibility of an algal bloom occurring and will provide data on demand for potential algal bloom forecasts. The Moptopus is designed to permanently inhabit a water body, providing real-time information on many of the parameters that control algal growth.</p>
-
       <div class="span3">
+
       <h2>4. Informing</h2>
-
        <div id="mainwrapper">
+
      <p>With daily monitoring of algal bloom toxicity and data relating to algal bloom growth, the Moptopus can act as an early warning system. This warning system would inform the public in cases where toxicity could be harmful to individuals and pets. Furthermore, by real-time detection of toxicity, the need for the ToxiMop can be determined immediately and the mop deployed when needed.</p>
-
                    <!-- Image Caption 6 -->
+
       <p>By monitoring the relationship between environmental conditions and toxicity we can potentially learn more about any environmental links and causes of this toxicity.</p>
-
              <div id="box-6" class="box">
+
-
                <img id="image-6" src="http://placehold.it/220/C6E546/000000&text=Toxi-Mop" style="width:220px;height:220px;"/>
+
-
              <span class="caption scale-caption" style="text-align:justify">
+
-
                          <p><b>Toxi-Mop </b><br><br> We are using cloning techniques to genetically engineer B. subtilis and E. coli to express PP1 so that they can inhibit the toxin microcystin in algal blooms, therefore reducing harm to freshwater ecosystems. </p>
+
-
                </span>
+
-
              </div>
+
-
            </div>
+
-
       </div>
+
-
   
+
-
      <div class="span3">
+
-
        <div id="mainwrapper">
+
-
                  <!-- Image Caption 6 -->
+
-
            <div id="box-6" class="box">
+
-
              <img id="image-6" src="http://placehold.it/250/0699C1/000000&text=Mop-topus" style="width:220px;height:220px;"/>
+
-
              <span class="caption scale-caption" style="text-align:justify">
+
-
                        <p><b> Project Mop-topus</b><br><br>  A remotly accessed electronic environmental sensor that detects and monitors the state of a lake and its susceptibility to algal blooms by measuring light, temperature, pH, and dissolved oxygen variables.</p>
+
-
              </span>
+
-
            </div>
+
-
          </div>
+
-
        </div>
+
-
      <div class="span3">
 
-
          <div id="mainwrapper">
 
-
                  <!-- Image Caption 6 -->
 
-
            <div id="box-6" class="box">
 
-
              <img id="image-6" src="http://placehold.it/250/8066DB/000000&text=Detection" style="width:220px;height:220px;"/>
 
-
              <span class="caption scale-caption" style="text-align:justify">
 
-
                          <p><b>The Detector</b><br><br> We are making 2 different microcystin detectors by substituting domains of bacterial cell surface receptors involved with gene regulation, with PP1 molecules. </p>
 
-
              </span>
 
-
            </div>
 
-
          </div>
 
-
        </div>
 
 +
      <h2>5.  Mathematical Modelling</h2>
 +
      <p>Mathematical modelling was the fundamental foundation to the project in understanding and informing the progression of the wet work.</p>
-
       <div class="span3">
+
       <p>Initially the team was working with two bacterial chassis, <i>E. coli </i>and <i>B. subtilis</i>. We planned to anchor PP1 to the outer surface of <i>B. subtilis</i> or have the protein free flowing in the periplasm of E. coli. If the efficiency of these bacterial chassis as mops depended only upon the number of PP1 they could accommodate, the <i>E. coli </i>chassis has the potential for greater efficiency. This analysis allowed the Wet team to tailor their time and resources accordingly. </p>
-
          <div id="mainwrapper" style="height:375px;">
+
-
                  <!-- Image Caption 6 -->
+
-
            <div id="box-6" class="box">
+
-
              <img id="image-6" src="http://placehold.it/250/EB3C8B/000000&text=Our Team" style="width:220px;height:220px;"/>
+
-
              <span class="caption scale-caption" style="text-align:justify">
+
-
                        <p><b>Our Team</b><br><br>The team is consists of biologists, a mathematician, a math biologist, a physicist and a software engineer. By bringing together students with different expertise, we strive to maintain and improve upon previous iGEM teams' achievements.</p>
+
      <p>Modelling of Tat machinery, which we used to transport the PP1 molecules to the periplasm of E. coli, produced ordinary differential equations able to mathematically explain the processes being carried out in the ToxiMop bacteria. Using this modelling, limiting factors of transport were identified and future improvements to increase the efficiency of the bacterial mop were suggested to the Wet team. </p>
-
              </span>
+
-
            </div>
+
-
          </div>
+
-
        </div>
+
-
       </div>
+
       <p>The migration of microcystin into the periplasm of a cell and its binding with PP1 are crucial events to the successful application of the ToxiMop. Visualisation of production and export of PP1 alongside these events was achieved via the creation of a virtual cell environment in Netlogo (a multi-agent programming language). This virtualisation allowed the dynamic alteration of key properties returning immediate feedback to help analyse the corresponding effects.</p>
-
      </div><!-- End Page Content -->
+
      </div>
 +
     
       <div id="push"></div>
       <div id="push"></div>
     </div>
     </div>
Line 379: Line 102:
-
    <!-- Le javascript
+
 
 +
      <!-- Le javascript
     ================================================== -->
     ================================================== -->
     <!-- Placed at the end of the document so the pages load faster -->
     <!-- Placed at the end of the document so the pages load faster -->
Line 386: Line 110:
     <script src="http://code.jquery.com/jquery-latest.js"></script>
     <script src="http://code.jquery.com/jquery-latest.js"></script>
     <script src="http://www.kyleharrison.co.uk/igem/js/bootstrap.min.js"></script>
     <script src="http://www.kyleharrison.co.uk/igem/js/bootstrap.min.js"></script>
-
 
-
 
-
    <script type="text/javascript">
 
-
 
-
      $("#tip").tooltip(); //call on the tooltip function and attach it to a tooltip id
 
-
    </script>
 
-
 
-
 
-
    <script language="Javascript" type="text/javascript" src="js/jquery.blinds-0.9.js"></script>
 
-
 
-
    <script type="text/javascript">
 
-
          $(window).load(function () {
 
-
            $('.slideshow').blinds();
 
-
        })
 
-
    </script>
 
   </body>
   </body>
</html>
</html>

Latest revision as of 21:36, 28 October 2013

iGEM Dundee 2013 · ToxiMop

Algae are photosynthetic organisms which live in aquatic environments. Cyanobacteria, also known as blue-green algae, are prokaryotes that are responsible for the majority of photosynthesis on Earth. During the hot and sunny summer months we experience a phenomenon known as an algal bloom. This is a spectacular increase in the size of the algal population in a water body as the algae take advantage of the seasonal spike in light and warmth. With increased amounts of nutrients leaching into water due to agriculture, blooms are becoming more common. Aside from affecting the environment they occur in, algae can be dangerous for humans as many species of algae produce toxins.

The Perfect Synthetic Biology Project

In the beginning, we thought: what makes a perfect synthetic biology project? First you have to have your idea. Rather than showing this to the public at the end of the project, we thought it would be a much better idea to include them in the project from the very start. In this way, they can bring up any concerns they have and we can try to address those throughout the project through our Human Practices.

With this, our project becomes a lot less about consultation and a lot more about inclusion. For this reason, we feel that our team has become a lot more than the ten of us. These extra team members will be introduced throughout the project.

ToxiMop Project

In order to tackle these toxic algal blooms, our project consisted of 5 subdivisions which come together to reach the best solution;






  1. Mopping
  2. Detecting
  3. Monitoring
  4. Informing
  5. Mathematical Modelling

1. Mopping

We are to focussing on one hepatotoxin called microcystin, a cyclic non-ribosomal peptide that binds covalently and irreversibly to protein phosphatases in mammalian bodies resulting in an inactivation of the protein.

The study of biochemical processes in human cells is one of the most heavily-researched scientific fields. However, it is not often that scientists exploit the biochemical potential that our bodies offer in order to create new technologies for environmental remediation. We have decided to exploit the human protein-phosphatase 1 (PP1)–microcystin interaction to create a bacterium that will sequester microcystin and prevent its toxic action.

Microcystin cannot freely diffuse through the inner membrane of bacteria but can sufficiently enter the outer membrane. Therefore we engineered the chassis organism Eschericha coli to export human protein-phosphatase 1 (PP1) to its periplasmic compartment. By doing this we have created a biological mop for microcystin that we call the ToxiMop.

2. Detecting

The current procedures for detecting algal toxins involve HPLC (High Performance Laser Chromatography) analysis of contaminated water bodies, and takes approximately 24 hours. Bacterial populations are so dynamic that in the interim between taking a sample for testing and getting a result, the amount of toxin present may have changed dramatically. In addition, this kind of analysis is expensive, so often water bodies will not be tested unless there is already some evidence of algal growth.

Based on the protein – toxin interaction explained above we also constructed a toxin detection system. E. coli’s membrane-bound osmolarity sensor, EnvZ, was modified to include the PP1 protein. The idea was that upon binding to the microcystin, EnvZ is activated and triggers luminescence by upregulating expression of a fluorescent reporter gene. The luminescence can then be recognised by our monitoring device – the Moptopus.

3. Monitoring

Feedback from the biological detector would be recognised by a modular hardware device called the Moptopus. The Moptopus contains a pH meter, dissolved oxygen meter, thermometer, light sensor, humidity meter and a camera. Implementing these sensors allows us to calculate the possibility of an algal bloom occurring and will provide data on demand for potential algal bloom forecasts. The Moptopus is designed to permanently inhabit a water body, providing real-time information on many of the parameters that control algal growth.

4. Informing

With daily monitoring of algal bloom toxicity and data relating to algal bloom growth, the Moptopus can act as an early warning system. This warning system would inform the public in cases where toxicity could be harmful to individuals and pets. Furthermore, by real-time detection of toxicity, the need for the ToxiMop can be determined immediately and the mop deployed when needed.

By monitoring the relationship between environmental conditions and toxicity we can potentially learn more about any environmental links and causes of this toxicity.

5. Mathematical Modelling

Mathematical modelling was the fundamental foundation to the project in understanding and informing the progression of the wet work.

Initially the team was working with two bacterial chassis, E. coli and B. subtilis. We planned to anchor PP1 to the outer surface of B. subtilis or have the protein free flowing in the periplasm of E. coli. If the efficiency of these bacterial chassis as mops depended only upon the number of PP1 they could accommodate, the E. coli chassis has the potential for greater efficiency. This analysis allowed the Wet team to tailor their time and resources accordingly.

Modelling of Tat machinery, which we used to transport the PP1 molecules to the periplasm of E. coli, produced ordinary differential equations able to mathematically explain the processes being carried out in the ToxiMop bacteria. Using this modelling, limiting factors of transport were identified and future improvements to increase the efficiency of the bacterial mop were suggested to the Wet team.

The migration of microcystin into the periplasm of a cell and its binding with PP1 are crucial events to the successful application of the ToxiMop. Visualisation of production and export of PP1 alongside these events was achieved via the creation of a virtual cell environment in Netlogo (a multi-agent programming language). This virtualisation allowed the dynamic alteration of key properties returning immediate feedback to help analyse the corresponding effects.