Team:Groningen

From 2013.igem.org

(Difference between revisions)
Line 17: Line 17:
-
{|align="center"|[[Team:Groningen | Team Groningen]]
 
-
|}
 
-
 
-
<!--- The Mission, Experiments --->
 
-
 
-
 
-
 
-
 
-
 
-
{|align="justify"
 
-
|
 
<h1>Abstract</h1>
<h1>Abstract</h1>
<p>The unique properties of silk have provided it with a utility that goes far beyond that of any other natural fibers known to man. Its amazing mechanical properties, 'silky smooth' softness, and bio-compatibility, has led to applications ranging from from simple clothing to high tech biomedical devices.</p>
<p>The unique properties of silk have provided it with a utility that goes far beyond that of any other natural fibers known to man. Its amazing mechanical properties, 'silky smooth' softness, and bio-compatibility, has led to applications ranging from from simple clothing to high tech biomedical devices.</p>
Line 35: Line 24:
Our goal is to solve the secretion issue and to use it for the formation of a silk biofilm. The beauty of such a biofilm can be attributed to the properties of silk, and to the fact that any imaginable shape of seamless silk could be created since the biofilm grows in such a way as to fit its mold. We will be exploiting these properties to coat biomedical prosthetic devices, with the goal to prevent infections, and hence to prevent the required operations in dealing with such infections.  
Our goal is to solve the secretion issue and to use it for the formation of a silk biofilm. The beauty of such a biofilm can be attributed to the properties of silk, and to the fact that any imaginable shape of seamless silk could be created since the biofilm grows in such a way as to fit its mold. We will be exploiting these properties to coat biomedical prosthetic devices, with the goal to prevent infections, and hence to prevent the required operations in dealing with such infections.  
</p>
</p>
-
 
-
 
 
-
|-
 
-
|
 

Revision as of 19:23, 17 July 2013


Home Team Official Team Profile Project Parts Submitted to the Registry Modeling Notebook Safety Attributions Contact TESTPAGE


Abstract

The unique properties of silk have provided it with a utility that goes far beyond that of any other natural fibers known to man. Its amazing mechanical properties, 'silky smooth' softness, and bio-compatibility, has led to applications ranging from from simple clothing to high tech biomedical devices.

The industry from which silk is obtained, however, is less than ideal. Scientists have therefore begun to design silk-producing micro-organisms. The 2012 iGEM team from Utah have indeed successfully designed BioBricks for this very purpose. However, these micro-organisms remain inadequate in the secretion of silk, which is a major limiting factor on the range of potential biosynthetic designs and applications.

Our goal is to solve the secretion issue and to use it for the formation of a silk biofilm. The beauty of such a biofilm can be attributed to the properties of silk, and to the fact that any imaginable shape of seamless silk could be created since the biofilm grows in such a way as to fit its mold. We will be exploiting these properties to coat biomedical prosthetic devices, with the goal to prevent infections, and hence to prevent the required operations in dealing with such infections.