Team:HUST-China/Modelling

From 2013.igem.org

(Difference between revisions)
Line 73: Line 73:
<li><a href="https://2013.igem.org/Team:HUST-China/Modelling/DDE_Model"></i>Delay Differential Equations</a></li>
<li><a href="https://2013.igem.org/Team:HUST-China/Modelling/DDE_Model"></i>Delay Differential Equations</a></li>
<li><a href="https://2013.igem.org/Team:HUST-China/Modelling/MCOS"></i>Multi Cells Oscillation Simulation</a></li>
<li><a href="https://2013.igem.org/Team:HUST-China/Modelling/MCOS"></i>Multi Cells Oscillation Simulation</a></li>
-
<li><a href="https://2013.igem.org/Team:HUST-China/Modelling/wet-lab_data_analysis">Wet-lab Data Analysis</a></li>
+
<li><a href="https://2013.igem.org/Team:HUST-China/Modelling/Wet-lab_data_analysis">Wet-lab Data Analysis</a></li>
<!------------------------------------------Left side navigator end---------------------------------------------------->
<!------------------------------------------Left side navigator end---------------------------------------------------->
            </ul>
            </ul>

Revision as of 03:45, 27 October 2013

Overview

The major goals of our modeling work are: validating our project design, simulating its working condition and fitting our simulation with our wet-lab result. The genetic pathway we used is described as below.

Fig 1.The pathway of genetic oscillator used in our project.

The enzymes that can induce the expression of propanoic acid is replaced with mRFP. Throughout the whole modelling work, we choose to study AraC instead of mRFP since they are in the same plasmid and we assumed that the expression rate of both protein is similar. By doing this, we can reduce the number of equations. We divide our modelling work into three parts:
(1)Feasibility of genetic oscillator and its proper parameters.
(2)Oscillation of a group of genetic oscillator cells.
(3)Statistically analyze our experiment data and our simulation data.
To be more specifically, we want to find out if this genetic oscillator can oscillate in the first place, if its period can be adjusted, if it is stable against environment changes, whether a large group of these oscillators can oscillate as well and how our our modelling result fit with our wet-lab result.