Team:Kyoto/projectRNA

From 2013.igem.org

(Difference between revisions)
(Introduction)
 
(152 intermediate revisions not shown)
Line 8: Line 8:
</html>
</html>
<div id="projectRNA">
<div id="projectRNA">
-
<html>
+
<div class="texts" style="margin-top: -9px;">
-
<ul class="kyoto-tabs">
+
=RNA Oscillator=
-
  <li><a href="#introtab"><img src="https://static.igem.org/mediawiki/2013/b/be/Introductiontab.png"></a></li><br>
+
-
  <li><a href="#activationtab"><img src="https://static.igem.org/mediawiki/2013/f/fb/Activationtab.png"></a></li><br>
+
-
  <li><a href="#repressiontab"><img src="https://static.igem.org/mediawiki/2013/1/1e/RNArepressiontab.png"></a></li><br>
+
-
  <li><a href="#fusiontab"><img src="https://static.igem.org/mediawiki/2013/d/dc/Fusiontab.png"></a></li><br>
+
-
  <li><a href="#conctab"><img src="https://static.igem.org/mediawiki/2013/c/ce/Conclusiontab.png"></a></li><br>
+
-
  <li><a href="#futuretab"><img src="https://static.igem.org/mediawiki/2013/7/73/RNAFutureworktab.png"></a></li><br>
+
-
  <li><a href="#achievetab"><img src="https://static.igem.org/mediawiki/2013/f/fe/RNAtabAchievement.png"></a></li><br>
+
-
  <li><a href="#partslisttab"><img src="https://static.igem.org/mediawiki/2013/b/be/Partslisttab.png"></a></li><br>
+
-
</ul>
+
-
</html>
+
-
<div class="texts" style="margin-top: -7px;">
+
-
=RNA Module=
+
<div id="introtab">
<div id="introtab">
==Introduction==
==Introduction==
-
先のチューリングの例でみたように、chassisとして大腸菌を用いたときには、各点での因子の条件が任意の点で等しい、というような状況は考えにくいだろう。これは、大腸菌間での作用をかんがえているためであるから、細胞間でのモデルを考えた方が良いだろう。
+
===Motivation===
-
 
+
Simulating cell-cell interaction model is too complicated to compute because there is a need to consider not only intracellular condition but also more complex conditions such as positional relationship.
-
細胞内のオシレーションとしては、例えばシアノバクテリアのkai protein familyなどがある<reference>。Kaiタンパクのオシレーションの機構は<ふにゃふにゃ>である。しかし、kaiのオシレーションを大腸菌で実現しようとすると。周期の時間がスケールが大腸菌の分裂速度よりも大幅に違う。よって、正確にモデリングすることが困難だろう。だから、短時間のモデルが考えやすいだろう。
+
Then we focused on intracellular condition, and considered what makes this difference between dry work and wet work,  and makes modeling and experiment closer. A study of synthetic biology shows an oscillation model which is confirmed in both dry and wet lab.[1] Under this experiment, the effect of cell division which seems to give biggest interference with oscillation cycle can be approximated into zero. Consequently, this circuit is robust enough. From this example, one of the solution to deal with difficulties in reconstructing dry model in wet lab is adoption of robust gene-circuit model in order to ignore the complexity by approximation. However, there are difficulties in choosing factors under the limitation of remaining the robustness of the cycle. We worked on a consisting oscillation circuit which can be closely reproduced by computer simulation. Our goal is generating oscillation cycle in both wet and dry lab.
-
 
+
-
さて、チューリングのモデルを大腸菌内で、かつ短い時間スケールで実現する際のfactorとして、私たちはRNAを提唱する。実際、転写調節因子としてのRNAの研究は始まっている<reference>。RNAを使う利点としては、次の2点が挙げられる。
+
-
 
+
-
<引用>4RNAは二次構造の予測や、RNA同士やDNAに対する特異的な結合を可能にするような設計を行うこともタンパク質に比較すると容易である。よって、遺伝子回路を製作するにあたって、回路を構成するRNA同士が塩基配列特異的な相互作用をするように設計すれば、数に限りがある既存のアクチベーターやリプレッサータンパク質を用いては不可能だったような、一細胞内で複数の独立した回路を共存させるということが可能になる。加えて、回路に直接関係しない任意の遺伝子の発現量をそれ同調させることも可能となる。
+
-
 
+
-
Firstly, compared to protein, it is easier to predict the secondary structure of RNA, and to design the structure in order to bind to a specific RNA or DNA. Therefore, if we design the RNA which constructs the circuit to interact specifically to the base sequence, we can make some different circuits co-exist inside one cell. Moreover, since we can predict the structure we can link a post-transcriptional RNA reporter to the functional RNA to stop the conformational alternation, and realize an imaging of the RNA.
+
-
 
+
-
5さらにRNAは転写後、機能するまでに翻訳の時間を要しないため、応答までの時間が短縮される。また、生体内での分解もタンパク質と比較して早いので、転写調節から応答までの時間を比較的短くすることも可能になると考えられる。そのため、遺伝子回路を構成する分子を決定するとき、 タンパク質とRNAを適宜織り交ぜることで、転写調節から目的分子の細胞内の量を調節する時間をより広い幅でcontrolできるようになるかもしれない。</引用>
+
-
 
+
-
今回、私たちの用いるオシレーションのモデルは、<チューリングのアレ>です。このモデルにはactivatorとrepressorが必要です。それぞれの要素については以下に述べる。
+
</div>
</div>
<div id="activationtab">
<div id="activationtab">
-
==Repressor==
+
===Oscillation===
-
<p>We took up non-coding RNA (ncRNA) complementarily binding mRNA as an example of functional RNA which repress transcription. Some kinds of ncRNA work as a transcriptional repressor in vivo, for example, Gram-negative bacteria <i>Staphylococcus aureus</i> regulates a copy number of plasmid called pT181 in this mechanism.<sup>5</sup>The ncRNA in pT181 plasmid controls the fate of transcriptional elongation in response to an input by antisense RNA. Attenuator region, which lies in 5' untranslated region of a transcript, folds into two different RNA structures. By an interaction with complementary antisense RNA, attenuator region forms Rho-independent terminator and the transcription of the downstream is stopped. Without antisense RNA, RNA in attenuator region folds into an alternative structure which allows transcription of the downstream (Novick, 1989). The uniqueness of this mechanism is that it is constructed with only RNA and without other small molecules, many synthetic biologist constructed a variant of it by means of nucleotide substitution etc. (Takahashi et al, 2013). We chose this mechanism in gene repression. </p>
+
We propose following circuit with RNA-RNA interaction as repression mechanism and RNA aptamer-TetR protein interaction as activation mechanism. Fluctuation of factors that effects on a model such as cell division can be approximated into zero because the fluctuation becomes narrower with RNA that is produced or discomposed speedy, we think. We choose Spinach as reporter.
-
[[Image: 2013IGKUprojectRNArepressionMECHANISM.png]][[Image:2013IGKUprojectRNArepressionMECHANISM2.png]]
+
<html>
-
<p>To ensure the function of antisense RNA and attenuator region, we will compare the amount of mRNA of GFP located in the downstream of an attenuator region in the presence and absence of antisense RNA.</p>
+
<center>
 +
<iframe id="kyoto_prezi" src="http://prezi.com/embed/eaubz-cct4kd/?bgcolor=ffffff&amp;lock_to_path=0&amp;autoplay=0&amp;autohide_ctrls=0&amp;features=undefined&amp;disabled_features=undefined" width="550" height="400" frameBorder="0">
 +
<img src="https://static.igem.org/mediawiki/2013/a/a0/Kyoto_RNA_Prezi.png"/>
 +
</iframe>
 +
</center>
 +
</html>
-
<p>転写の抑制を行うようなRNAの例として、我々は、伝令RNAに相補的に結合するncRNAによる転写制御を挙げる。これは、生体内でのRNAによるゲノム転写機構のひとつ、Gram-negative bacteria Staphylococcus aureusのpT181と呼ばれるplasmidなどのコピー数のregulationの機構である。RepressorとなるRNA (Antisense RNA)がある状態では、プロモーター下流のAttenuator locusがRho-independent terminator を形成することによりgenome coding部位の転写が抑制されるが、if the antisense RNA fails to bind, nascent RNA refolds into an alternative structure which prevents termination and promotes read-through (Novick, 1989) という仕組みを用いている。この機構は、他のリボスイッチと違いRNAのみで他の低分子化合物を用いていないため、合成生物学の新たな手法として、塩基置換などにより様々なタイプのものが作られている (Takahashi et al, 2013)。
+
This circuit generates oscillation in the following way: Before starting the oscillation, this circuit doesn't generate oscillation due to the repression of attenuator-TetR aptamer by lacI. First, tet promoter(Ptet) is repressed by TetR at the downstream of constitutive promotor. Then, the oscillator is turned on by IPTG. IPTG induces a transcription of TetR aptamer at the downstream of Plac, Spinach, and pT181 antisense at the downstream of Ptet which are transcribed. Because TetR aptamer activates Ptet, positive feedback occurs and more and more TetR aptamer, Spinach, and Antisense are accumulated. Then, this circuit gets fluorescence. After Antisense is accumulated to some extent, TetR aptamer, at the downstream of Attenuator region, is repressed. Then, because new TetR aptamer is not created, the amount of TetR aptamer decreases quickly. Therefore, Ptet is repressed by TetR protein and the amount of Antisense and Spinach falls, too. Then, this circuit loses fluorescence. After the amount of Antisense decreases sufficiently, this circuit recovers first condition. Through this cycle, this circuit acts as an oscillator.
-
われわれはこれをRepressionの回路とした。AttenuatorとAntisenseの、Attenuator Regionより下流の遺伝子の転写を阻害する機能を確認するため、Attenuator antisense RNAの存在下と非存在下で、Attenuator Region下流のGFP遺伝子の発現量を比較した。 </p>
+
[[File:Kyoto_RNA_Prezi.png]]
-
<p> In order to check the function of Attenuator and Antisense, we introduced Attenuator and Antisense into E.coli as experimental groups. We compared this E.coli with several controlled group in expression of GFP.</p>
+
-
<p>------const------</p>
+
-
Positive Control<br>
+
-
A-B: Pcon-RNAs(tetRaptamer, attenuator), Pcon-atte-GFP<br>
+
-
-antisenseを他のRNAで置き換えたもの。これによってRNAであることが問題なのでなく、antisenseのもつ相補的配列が問題であることを確かめる。<br>
+
-
C: Pcon-atte-GFP<br>
+
-
Antisense非存在下においてはGFPの発現は抑制されないことを確認する。<br>
+
-
Experimental Group<br>
+
-
D: Pcon-antisense Pcon-atte-GFP<br>
+
-
Positive Control<br>
+
-
<br>
+
-
A-B. Pcon-RNAs(tetRaptamer, attenuator), Pcon-attenuator-GFP<br>
+
-
<p>In order to check the uniqueness of Antisense in repression, we introduced other RNAs into E.coli.</p>
+
-
C. Pcon-attenuator-GFP<br>
+
-
<p>This E.coli shows that if there is no Antisense, the expression of GFP is not repressed.</p>
+
-
Experimental Group<br>
+
-
D. Pcon-antisense Pcon-attenuator-GFP<br>
+
-
[[Image: IGKUprojectRNArepressionCONST2.png]]
+
-
<p>------const------</p>
+
-
<p>---figcaption----</p>
+
-
<p>  Antisenseが常時発現している大腸菌(figE)においてはAttenuator Regionの下流にあるGFPの転写が抑制され、Antisenseが存在しない大腸菌(figD)では抑制されていないことから、figEの大腸菌における転写抑制はAntisenseに起因することがわかる。figEの大腸菌でAntisenseをコードしていた部分を他の配列に置き換えた大腸菌(figA-C)におけるGFPの転写量はAntisenseを転写しない大腸菌(figD)に比べて遜色ないことから、figEの大腸菌での転写抑制はAtternatorに特異的なものであったことが導かれる。 </p>
+
-
<p> Compared with E.coli which didn’t express Antisense(figC), E.coli which always expresses Antisense(figD) was repressed in expression of GFP. This demonstrates that this repression was caused by expression of Antisense. Furthermore, because E.coli in which other structure of RNA was introduced(figA-B) expresses as much GFP as E.coli which didn’t expresses Antisense, we can say that this repression was peculiar to Antisense. </p>
+
-
<p>---figcaption----</p>
+
</div>
</div>
<div id="reportertab">
<div id="reportertab">
-
==Activator==
+
===Repressor===
-
<p>We pick up tetR aptamer as an example of functional RNA which activates transcription. TetR aptamer specifically binds tet represser (tetR), which binds DNA specific site, repress transcription of downstream gene, and induce tetR conformational change and tetR reorientation.<sup>7</sup> That is, if in one cell, tetR is constantly expressed, gene located in the downstream of tet promoter is usually repressed and only when tetR aptamer is being expressed, it derepressed and transcribed. </p>
+
We took up non-coding RNA (ncRNA) complementarily binding mRNA as an example of functional RNA which represses transcription. ncRNA in pT181 plasmid (pT181 attenuator) controls the fate of transcriptional elongation in response to an input by complementary antisense RNA. Attenuator region, which lies in 5' untranslated region of a transcript, folds into two different RNA structure. By an interaction with complementary antisense RNA, attenuator region forms Rho-independent terminator and the transcription of the downstream is stopped. Without antisense RNA, attenuator region RNA folds into an alternative structure which allows transcription of the downstream (Novick et al, 1989)[5]. The uniqueness of this mechanism is that it is constructed with only RNA without other small molecules. Synthetic biologists vary functions of RNA only by means of nucleotide substitution etc. (Takahashi et al, 2013)[2].
-
[[Image: 2013IGKUprojectRNAactivationMECHANISM.png]]
+
In this paper, many variants of pT181 attenuator/antisense are constructed and the attenuation rate of each variant is different. We chose this mechanism for gene repression. 2013IGKUprojectRNArepressionMECHANISM.png
-
<p>In our experiment, we check and measure tetR aptamer’s function in E.coli by comparing GFP fluorescence regulated by tetR promoter and GFP expression level by qRT-PCR in the following 4 cellular cases:1 TetR and tetR aptamer is constantly expressed. 2 Only tetR is constantly expressed and tetR aptamer is not induced.3 TetR and other functional RNA is constantly expressed. 4 TetR is not induced.</p>
+
[[File:2013IGKUprojectRNArepressionMECHANISM.png]]
-
 
+
[[File:2013IGKUprojectRNArepressionMECHANISM2.png]]
-
<p>転写のアクチベーションを行うような機能性RNAの例として、我々はtetR aptamerを挙げる。これはtet repressorに特異的に結合するアプタマーであるが、DNAの特定領域に結合して転写を抑制しているtet repressorに結合してDNAから解離させる作用も持つ。つまり、常に一定量のtet repressorが発現し、存在しているような細胞内では、tetR aptamerが発現している間のみtet promotor以下の転写の抑制が解除、つまり活性化され、tetR aptamerが発現していず存在していない場合は、tetRの機能によって転写が抑制されるようになる。 tetR aptamerの働きを確認するため、tetRタンパク質とtetR aptamerを常時発現させた場合と、tetRタンパク質のみを常時発現させた場合、tetRとtetR アプタマー以外の構造をもつRNAを発現させた場合、tetRを発現させなかった場合とで、tetプロモーター下流に配置したGFP遺伝子を発現させその蛍光を見、qRT-PCRで発現量を比較しtetR aptamerの働きを確認した。(顕微鏡で蛍光度の差が確認できたときはqRT-PCRは補強扱いとし、確認できなかった場合はqRT-PCRのみを蛍光度の比較の尺度とする。) </p>
+
-
<p>In order to check the function of tetRaptamer, we introduced tetR and tetRaptamer as experimental group. We compared this E.coli with several controlled groups in expression of GFP.</p>
+
-
<p>-----コンストラクション------</p>
+
-
Positive Control<br>
+
-
A. Ptet-GFP<br>
+
-
-tetRを導入せず、Ptet-GFP単体のもの。tetRが存在しない場合にPtetがonになるということの確認。<br>
+
-
Negative Control<br>
+
-
B. Ptet-GFP, Pcon-TetR<br>
+
-
-tetRaptamerが存在しない場合。tetRがそのままで転写抑制をすることの確認。<br>
+
-
C-D. Ptet-GFP, Pcon-TetR, Pcon-RNAs(anti_attenuator, attenuator)<br>
+
-
-tetR aptamerを他のRNAで置き換えたもの。これによってRNAであることが問題なのでなく、tetR aptamerのみが持つ構造と機能が問題であることを確かめる。<br>
+
-
Experimental Group<br>
+
-
E. Ptet-GFP, Pcon-TetR, Pcon-tetRaptamer<br>
+
-
<br>
+
-
Positive Control<br>
+
-
A. Ptet-GFP<br>
+
-
<p>In order to check whether the GFP gene is expressed when there is no tetR protein, we introduced only Ptet-GFP.</p>
+
-
Negative Control<br>
+
-
B. Ptet-GFP, Pcon-tetR<br>
+
-
<p>Through this E.coli, it is confirmed that when tetR is expressed, tetR surpresses the expression of GFP.</p>
+
-
C-D. Ptet-GFP, Pcon-tetR, Pcon-RNAs(antisense, attenuator)<br>
+
-
<p>These kinds of E.coli shows that the surpression of the function of tetR is caused only by tetRaptamer.</p>
+
-
Experimental Group<br>
+
-
E. Ptet-GFP, Pcon-tetR, Pcon-tetRaptamer<br>
+
-
[[Image: 2013IGKUprojectRNAactivatorCONST.png]]
+
-
<p>-----コンストラクション------</p>
+
-
<p>-----fig Caption------</p>
+
-
<p> tetRを発現しない大腸菌(figA)の蛍光はtetRを発現する大腸菌(figB)のそれよりも強いことから、tetRはtetリプレッサーに結合して下流の転写を妨げることがわかる。tetRを発現し、tetRaptamerを転写しない大腸菌(figB)のGFP転写量に比べてtetRとtetRaptamerの両方を発現する大腸菌(figF)のGFP転写量が有意に大きいことから、tetRaptamerはtetRによる転写の抑制を解除する働きがあることが示唆される。tetRaptamerをコードしていた部分を他の配列に置き換えた大腸菌(figC-E)の蛍光はtetRとtetRaptamerの両方を発現する大腸菌(figF)よりも弱く、tetRのみを発現する大腸菌(figB)と同程度であることから、figFの大腸菌におけるtetRの機能の抑制はtetRaptamerに特有のものであることがわかる。</p>
+
-
<p> The fact that the fluorescence of E.coli which expressed tetR(figB) was weaker than E.coli which didn’t express tetR(figA) shows that tetR represses the expression of genes at the downstream of tet promotor. Since E.coli  introduced tetR and tetRaptamer (figF) expressed more GFP than E.coli introduced only tetR(figB), we were confirmed that tetRaptamer cancels the effect of tetR {in some degree / almost completely}. Moreover, E.coli which was introduced other structure of RNA(figC-E) could express as much GFP as E.coli introduced tetR only(figB), which demonstrates that the surpression of the function of tetR protein is unique to tetRaptamer. </p>
+
-
<p>-----fig Caption------</p>
+
</div>
</div>
<div id="repressiontab">
<div id="repressiontab">
-
==<s>Reporter</s>==
+
===Activator===
-
<s>我々は、RNAでできたレポーターとなりうる分子として、Spinachを挙げる。これはJeremy S. Paige, Karen Y. Wu, Samie R. Jaffrey, によって設計されたアプタマーの一種で、GFPを模倣している。SpinachはGFPの蛍光部位によく似た合成物であるDMHBIに特異的に結合するアプタマーから設計された。GFPのfluorophoreはdenatured GFPでは蛍光を示すことがなく、分子の奥に折りたたまれて初めて蛍光を発するようになる。DMHBIもこれと似た性質を持っており、単体ではほぼ蛍光を示すことはなく、GFPの構造の持つ機能を真似たSpinachの高次構造の奥に取り込まれて初めて蛍光するようになる。そのため、サンプルにDMHBIを加えた後に蛍光を確認すると、サンプル内にSpinachが存在するかどうかがわかる。もし存在すればSpinachはDMHBIと結合して蛍光を発するだろうし、存在しなければ蛍光は発しえない。Spinachを用いることで、RNAを直接イメージングできる他、安定なタンパク質では確認できない、大きく変化するRNAの発現量を正確に反映することが出来る。<br>
+
We took up TetR aptamer as an example of functional RNA which induces transcription. TetR aptamer induces tetracycline promoter (Ptet) by binding with tetracycline repressor (TetR), which represses Ptet. When TetR aptamer binds to TetR, it induces the conformational change of TetR. As a result, TetR cannot come to bind to tetracycline operator (tetO). We ordered MBL=IDT gene synthesis of pT181 attenuator region DNA, antisense DNA and TetR aptamer with prefix and suffix.We transferred these parts to pSB1C3 and constructed device for antisense and attenuator assay.
-
【メモ:Assay、Result、Discussion】</s>
+
[[File:No-binding-of-tetR-aptamer.png]][[File:Binding-of-tetR-aptamer.png]]
</div>
</div>
<div id="fusiontab">
<div id="fusiontab">
 +
===Reporter===
 +
Spinach is an example of a reporter RNA aptamer,which emits the green fluorescence like GFP when it binds to a fluorophore (DFHBI), which is a derivative fluorophore of GFP. DFHBI doesn't emit fluorescence alone. That is to say, if fluorescence is observed after DFHBI is added into liquid culture, it manifests that Spinach is expressed. If Spinach exists, it combines with DFHBI and DFHBI emits fluorescence. Hence, by using Spinach, it’s possible not only to image RNA directly, but also to reflect the transcription level accurately, which can’t be confirmed via stable protein because RNA is degraded faster than protein. <br>
 +
We strongly suggest Spinach aptamer as a reporter of RNA.
 +
[[File:SPINACHの説明.png]]
-
==Fusion==
+
===Fusion===
-
<p>これらを使って遺伝子回路を組み立てるとき、複数のmoduleを同じ機能要素に組みこまなければならないときも十分あり得る。例えば転写抑制の様子をレポートするとき、異なる因子で促進と抑制を行うような系を作るときである。このとき、複数のモジュールを連結したことによる相互作用や立体構造の問題により機能が阻害される可能性がある。タンパク質ではその問題を予測するのは難しいが、RNAであれば配列情報から比較的簡単に二次構造を予測することができ、これらの問題を回避出来る。われわれは、機能を確認したtetR aptamer, Antisense-Attenuator RNA, をそれぞれつなぎあわせ、二次構造を予測し、実際に働いていることを確認した。tetRタンパク質存在下でtetR aptamerとAttenuator antisense RNAを組み合わせたRNAがPtetプロモーター下流のGFPの転写量を増加させるかを確認した。<br>
+
<p>Intending to construct our oscillation circuit, we have to combine two modules into one strand. When we combine two modules, the function of the modules may be inhibited by interactions of secondary structures. In case of RNA, it is relatively easier to predict the morecules' structure.
-
<s>並びにAttenuator antisense RNAとSpinarchを連結したRNAを発現させ、Attenuator Region下流のGFP遺伝子の発現量が減少していることとSpinarchがDFHBI存在下で蛍光するかどうかを確認した。</s><br><br>
+
We estimated the RNA structure to check whether or not unindicatd duplex is formed by open tool.
-
Intending to check the process of transcriptional repression system and the system which promotes and represses processes of transcription by using different factors, we have to join some modules into a single RNA strand.<br>
+
-
When we combine plural modules, the function of the modules may be inhibited by interactions and steric structures between each other. in the case of RNA,it is easier to predict and avoid the problems than that of proteins because we can predict the secondary structure of RNA from its primary structure. We combined tetR aptamer and Antisense-Attenuator RNA, whose functions are confirmed, and predicted secondary structures, and actually it worked. We also observed that RNA,which is conbined with tetR aptamer and Attenuator antisense RNA increased transcription amounts of downstream GFP of Ptet promoter in the presence of tetR proteins.<br>
+
</p>
</p>
-
<p>-----const-------</p>
 
-
experimental group<br>
 
-
a. Pcon-atte-tetRaptamer-DT Ptet-GFP-DT Pcon-tetR-DT<br>
 
-
positive control<br>
 
-
b. Pcon-tetRaptamer-DT Ptet-GFP-DT Pcon-tetR-DT<br>
 
-
-Fusionする前とのtetRaptamerの働きの比較<br>
 
-
negative control<br>
 
-
c. Ptet-GFP-DT Pcon-tetR-DT<br>
 
-
<br>
 
-
Positive Control<br>
 
-
A. Pcon-tetRaptamer Ptet-GFP Pcon-tetR<br>
 
-
<p>Through this E.coli, we can confirm that separated tetRaptamer restricts the function of tetR protein.</p>
 
-
Negative Control<br>
 
-
B. Ptet-GFP Pcon-tetR<br>
 
-
<p>This E.coli shows that tetR protein represses the expression of genes at the downstream of tet promotor.</p>
 
-
Experimental Group<br>
 
-
C. Pcon-atte-tetRaptamer Ptet-GFP Pcon-tetR<br>
 
-
[[Image: 2013IGKUprojectRNAfusionCONST2.png]]
 
-
<p>------const-------</p>
 
-
<p>We used centroid fold (URL) and mfold (URL) to predict the secondary structure of RNA(a). As the picture shown below, the structure of tetR aptamer is not affected by attenuator stem loop. This suggests that the efficiency of tetR aptamer is not affected by the existence of attenuator stem loop.</p>
 
-
[[Image: 2013IGKUprojectRNAfusionCENTROIDattenuatoraptamer.png]]
 
-
<p>Centroid fold, mfoldのfig-tetR aptamer only----tetR aptamer-antisence</p>
 
-
<p> tetRが常時発現されている状態では、AttenuatorとtetRaptamerを連結したRNAを転写する大腸菌(figC)のGFP発現量は、tetRaptamerを転写しない大腸菌(figB)よりも多く、ほかのRNAと連結していないtetRaptamerを転写する大腸菌(figA)と比較して{ほぼ同等 or 小さい}であることから、AttenuatorとtetRaptamerを連結すると、tetRaptamerは{全く干渉せずに機能する or 効果は下がるが機能する}ことがわかる。 </p>
 
-
<p> If tetR is expressed, E.coli in which the united RNA(figC) was introduced expresses more GFP than E.coli which didn’t have the tetRaptamer sequence(figB). By comparing E.coli expressing independent tetRaptamer(figA) and E.coli expressing the united RNA(figC), it is convinced that tetRaptamer next door to Attenuator { works as well as independent one / works more weakly than a independent one. However, it certainly works.} </p>
 
-
【memo result書き直し】
 
</div>
</div>
<div id="conctab">
<div id="conctab">
-
==Conclusion==
+
==Experiment==
-
In this project we confirmed the function of activator (tetR / tetR aptamer) and repressor (Attenuator region / Antisense). Moreover, we predicted the secondary structure of linked RNA (Antisense RNA-tetR aptamer) to check the influence of linkage to the structure, and finally we confirmed that actually the function of tetR aptamer do not lost.
+
After we constructed functional RNA generator, we checked the transcription of the RNA parts. To confirm this, we performed RT-PCR.<br>
-
Our outcome of this project will directly connects to the progress of synthetic biology, especially constructing gene circuits. These two types of functional RNA will play important role when we regulate gene expression in peculiar gene cycle. For example, we may regulate a gene circuit which contains rapid gene transcriptional cascades by these RNA modules.
+
samples are following:<br>
 +
Negative control<br>
 +
*Non-promoter: Spinach-DT
 +
Experimental group<br>
 +
[[File:唯一のexperiment.png]]<br>
 +
We also checked whether fusion RNA we designed functions or not considering secondary structure with Centroid Fold[6]
</div>
</div>
-
<div id="futuretab">
 
-
==Future Work==
 
-
<p> To show this possibility, we designed a gene circuit which uses these RNA module. This circuit produces transcriptional oscillation. Oscillation circuits are important and essential gene circuits in many organisms and always be in the center of synthetic biology, therefore it is suitable for the cutting edge of new type of gene regulation. </p>
 
-
<p> When it comes to oscillation, we have to have a module which acts as reporter to show the changing amount of post-transcriptional RNA. Usually, protein reporters such as GFP are used for this purpose. However, in this circuit protein reporters may not be able to be used, because of the length of the period of the oscillation. Because RNA’s degradation is so fast and RNA do not need to be translated or folded like protein, the period of oscillation should be too short. According to XX who constructed similar gene circuit using RNA modules, this kinds of circuit produces 10 minutes cycle reaction.  This means protein degradation is too slow (takes XX hours even with the degradation tag) [要出典] to image this RNA oscillation.</p>
 
-
<p> To solve this problem, we will suggest a new RNA module, which called spinach. This is a kind of aptamer, which is designed by Jeremy S. Paige, Karen Y. Wu, and Samie R. Jaffrey.<sup>20</sup> They imitated the structure of GFP in this project. The designing of Spinach is changing the structure of an aptamer which specifically combines with DFHBI, which has similar structure to fluorophore of GFP. Denatured GFP doesn’t have fluorescence. Only if GFP is folded correctly, the fluorophore of GFP, which is in inner area, emits fluorescence.  Therefore, we can confirm whether there is Spinarch in a sample by adding DFHBI. If the sample contains Spinarch, the sample will emit fluorescent. Vice versa. Spinach may degrade first enough for the oscillation, therefore we propose this for reporter of this oscillation.</p>
 
-
<p>The circuit of oscillation which uses spinach and the two RNA module is like below. This describes mechanism of producing oscillation.</p>
 
-
<html><center><iframe src="http://prezi.com/embed/eaubz-cct4kd/?bgcolor=ffffff&amp;lock_to_path=0&amp;autoplay=0&amp;autohide_ctrls=0&amp;features=undefined&amp;disabled_features=undefined" width="550" height="400" frameBorder="0"></iframe></center></html><br>
+
==Result==
 +
===RT-PCR===
 +
We performed RT-PCR to confirm transcription of TetR aptamer(left) and Spinach(center).<br>
 +
[[File:ElectrophoresisRT1.png]]
 +
[[File:ElectrophoresisRT2.png]]
-
<p>この回路がオシレーションを形成する仕組みは、以下のようになっている。初期条件として、Constitutive Promoterにより合成されたTetRにより、Ptetはrepressされている。 オシレーションの開始はPtet下流のPlacがIPTGにより誘導されることである。これによってRNA-Actが合成開始され、その中のtetR aptamer配列がPtetをactivateする。 ActivateされたPtetはさらにRNA-Actを合成し、ここでポジティブ・フィードバックがかかることでRNA-Act, RNA-Repともにその量を増やす。すると、RNA-Repの配列内のSpinachにより緑色蛍光が確認される。 RNA-Repの量が十分に増えると、そのAttenuator antisenseの部位がRNA-ActのAttenuator locusに結合し、RNA-Actの転写量を減少させる。 するとTetR-AptamerによるActivationが小さくなることで、RNA-Act, RNA-Repの量が減少する。すると、Spinachによる蛍光は減衰する。 RNA-Repの量が十分に減少すると、Attenuator antisenseによる転写抑制が解かれ、再びRNA-Actの転写量が増えることとなる。これが繰り返されることで、オシレーションを作り上げている。この回路からは、RNAならではの分解・生成が速い性質によって、10分周期程度の短いSpinach蛍光のオシレーションを生むことが出来ると予測できる。</p>
+
===Structure Prediction===
-
<p> This circuit oscillates in the following way: First, tet promoter is repressed by tetR at the downstream of constitutive promotor. Then, the oscillator is turned on by IPTG. IPTG activates Plac and tetRaptamer, Spinarch, and Antisense at the downstream of Ptet which are transcribed. Because tetRaptamer activates tet promotor, positive feedback occurs and more and more tetRaptamer, Spinarch, and Antisense are accumulated. Then, this circuit gets fluorescence. After Antisense is accumulated to some extent, tetRaptamer, at the downstream of Atteruator region, is repressed. Then, because new tetRaptamer is not created, the amount of tetRaptamer decreases quickly. So, tet promotor is repressed by tetR protein and the amount of Antisense and Spinarch falls, too. Then, this circuit loses fluorescence. After the amount of Antisense decreases sufficiently, this circuit recovers first condition. Through this cycle, this circuit acts as an oscillator. Since RNA is generated and resolved quickly, this circuit should oscillate as quick as about in 10 minutes' cycle. </p>
+
[[File:2013IGKUprojectRNAfusionCENTROIDattenuatoraptamer.png]]
 +
[[File:antisense_spinach.png]]with Centroid Fold*
<br>
<br>
-
&#9757;&#9757;たぶん時制がめちゃくちゃですごめんなさい(´._.)
+
 
 +
==Conclusion==
 +
We confirmed the transcription of TetR aptamer, antisense-Spinach, Spinach, and GFP by using RT-PCR method.<br>
 +
We predicted secondary structure of fusion RNA: atenuator-TetRaptamer and antisence-Spinach with centroid fold. It seems to be the expected structure and to function as expected.<br>
 +
We got ready for the construction of the oscilator circuit in wet lab.<br>
 +
<div id="futuretab">
 +
 
 +
==Future work==
 +
To solve simultaneous differential equations meaning oscilation model numerically, we will try to found exact values of some constants. For example, to determine binding constant between TetR and TetR aptamer, we will try to build up assay method and to get quantitative data.<br>
 +
1. qualitative assay TatR aptamer<br>
 +
To confirm the act of TetR aptamer inducing Ptet ,we are constructing IPTG-inducble TetR aptamer to express GFP. As negative controls, we use RNA with antisense, attenuator, Spinach, no-RNA and attenuator-TetR aptamer. As positive controls, GFP is constitutively expressed.<br>
 +
3, qualitatively Spinach assay (visual recognition & fluorescence microscopes)<br>
 +
We will check that DFHBI fluorescence on a plate with Spinach.<br>
 +
We will cultivate IPTG-inducible Spinach in a liquid culture under a shading condition, and add DFHBI. Then we check whether this sample fluorescence after centrifugation. We also check Spinach-GFP and antisense-Spinach.<br>
 +
After that, we will substitute the values for oscilation model and try to solve simulate. Moreover we will continue assaying of our parts.<br>
 +
Then, after finishing construction of gene circuits that makes oscilation, we assay the oscilation circuit in wet lab. Our plans for the construction and assay are shown in [https://2013.igem.org/Kyoto:projectRNA/futureview this page]<br>
 +
Finaly, we compare results of wet lab and dry lab and discuss a point in common/difference between the results.
</div>
</div>
<div id="achievetab">
<div id="achievetab">
-
==Achievement==
 
-
我々は、このプロジェクトで以下のことを達成した。<br>
 
-
①<br>
 
-
②<br>
 
-
③<br>
 
-
④<br>
 
-
⑤<br>
 
-
⑥<br>
 
</div>
</div>
<div id="partslisttab">
<div id="partslisttab">
 +
== Parts List ==
== Parts List ==
-
-自分たちでつくったもの<br>
 
-
iGEMの仕様のやつのせてね<br>
 
<groupparts>iGEM013 Kyoto</groupparts>
<groupparts>iGEM013 Kyoto</groupparts>
-
-他チームのを機能確認したもの<br>
 
-
tetR<-他のチームのじゃねーんだよ起きろ<-起きれない<br>
 
-
spinach<-光ってねーんだよ起きろ<-寝る<br>
 
</div>
</div>
<div id="referencetab">
<div id="referencetab">
== Reference ==
== Reference ==
-
[7()][http://www.ncbi.nlm.nih.gov/pubmed/19246008  Anke Hunsicker et al.(2009)"An RNA aptamer that induces transcription"Chem Biol,16(2),173-180]<br>
+
[1][http://www.nature.com/nature/journal/v456/n7221/abs/nature07389.html Jesse Stricker et al.(2008)"A fast, robust and tunable synthetic gene oscillator" Nature 456, 516-519]<br>
-
[20(仮)][http://www.sciencemag.org/content/333/6042/642.abstract Jeremy S. Paige et al.(2011)"RNA Mimics of Green Fluorescent Protein"Science Vol. 333  no. 6042  pp. 642-646]<br>
+
[2][http://www.ncbi.nlm.nih.gov/pubmed/23761434 Melissa K. Takahashi and Julius B. Lucks.(2013)"A modular strategy for engineering orthogonal chimeric RNA transcription regulators"Nucleic Acids Research 41(15),7577-88]<br>
-
[5(仮)][http://www.ncbi.nlm.nih.gov/pubmed/23761434 Melissa K. Takahashi and Julius B. Lucks.(2013)"A modular strategy for engineering orthogonal chimeric RNA transcription regulators"Nucleic Acids Research 41(15),7577-88]<br>
+
[3][http://www.ncbi.nlm.nih.gov/pubmed/19246008  Anke Hunsicker et al.(2009)"An RNA aptamer that induces transcription"Chem Biol,16(2),173-180]<br>
 +
[4][http://www.sciencemag.org/content/333/6042/642.abstract Jeremy S. Paige et al.(2011)"RNA Mimics of Green Fluorescent Protein"Science Vol. 333  no. 6042  pp. 642-646]<br>
 +
[5][http://www.ncbi.nlm.nih.gov/pubmed/2478296 Novick RP et al. (1999) "pT181 Plasmid Replication Is Regulated by a Countertranscript-Driven Transcriptional Attenuator"]<br>
 +
[6][http://www.ncrna.org/ Functional RNA Project provided by Computational Biology Research Center (CBRC)]<br>
</div>
</div>

Latest revision as of 12:45, 10 October 2013

count down

Contents

RNA Oscillator

Introduction

Motivation

Simulating cell-cell interaction model is too complicated to compute because there is a need to consider not only intracellular condition but also more complex conditions such as positional relationship. Then we focused on intracellular condition, and considered what makes this difference between dry work and wet work, and makes modeling and experiment closer. A study of synthetic biology shows an oscillation model which is confirmed in both dry and wet lab.[1] Under this experiment, the effect of cell division which seems to give biggest interference with oscillation cycle can be approximated into zero. Consequently, this circuit is robust enough. From this example, one of the solution to deal with difficulties in reconstructing dry model in wet lab is adoption of robust gene-circuit model in order to ignore the complexity by approximation. However, there are difficulties in choosing factors under the limitation of remaining the robustness of the cycle. We worked on a consisting oscillation circuit which can be closely reproduced by computer simulation. Our goal is generating oscillation cycle in both wet and dry lab.

Oscillation

We propose following circuit with RNA-RNA interaction as repression mechanism and RNA aptamer-TetR protein interaction as activation mechanism. Fluctuation of factors that effects on a model such as cell division can be approximated into zero because the fluctuation becomes narrower with RNA that is produced or discomposed speedy, we think. We choose Spinach as reporter.

This circuit generates oscillation in the following way: Before starting the oscillation, this circuit doesn't generate oscillation due to the repression of attenuator-TetR aptamer by lacI. First, tet promoter(Ptet) is repressed by TetR at the downstream of constitutive promotor. Then, the oscillator is turned on by IPTG. IPTG induces a transcription of TetR aptamer at the downstream of Plac, Spinach, and pT181 antisense at the downstream of Ptet which are transcribed. Because TetR aptamer activates Ptet, positive feedback occurs and more and more TetR aptamer, Spinach, and Antisense are accumulated. Then, this circuit gets fluorescence. After Antisense is accumulated to some extent, TetR aptamer, at the downstream of Attenuator region, is repressed. Then, because new TetR aptamer is not created, the amount of TetR aptamer decreases quickly. Therefore, Ptet is repressed by TetR protein and the amount of Antisense and Spinach falls, too. Then, this circuit loses fluorescence. After the amount of Antisense decreases sufficiently, this circuit recovers first condition. Through this cycle, this circuit acts as an oscillator. Kyoto RNA Prezi.png

Repressor

We took up non-coding RNA (ncRNA) complementarily binding mRNA as an example of functional RNA which represses transcription. ncRNA in pT181 plasmid (pT181 attenuator) controls the fate of transcriptional elongation in response to an input by complementary antisense RNA. Attenuator region, which lies in 5' untranslated region of a transcript, folds into two different RNA structure. By an interaction with complementary antisense RNA, attenuator region forms Rho-independent terminator and the transcription of the downstream is stopped. Without antisense RNA, attenuator region RNA folds into an alternative structure which allows transcription of the downstream (Novick et al, 1989)[5]. The uniqueness of this mechanism is that it is constructed with only RNA without other small molecules. Synthetic biologists vary functions of RNA only by means of nucleotide substitution etc. (Takahashi et al, 2013)[2]. In this paper, many variants of pT181 attenuator/antisense are constructed and the attenuation rate of each variant is different. We chose this mechanism for gene repression. 2013IGKUprojectRNArepressionMECHANISM.png 2013IGKUprojectRNArepressionMECHANISM.png 2013IGKUprojectRNArepressionMECHANISM2.png

Activator

We took up TetR aptamer as an example of functional RNA which induces transcription. TetR aptamer induces tetracycline promoter (Ptet) by binding with tetracycline repressor (TetR), which represses Ptet. When TetR aptamer binds to TetR, it induces the conformational change of TetR. As a result, TetR cannot come to bind to tetracycline operator (tetO). We ordered MBL=IDT gene synthesis of pT181 attenuator region DNA, antisense DNA and TetR aptamer with prefix and suffix.We transferred these parts to pSB1C3 and constructed device for antisense and attenuator assay. No-binding-of-tetR-aptamer.pngBinding-of-tetR-aptamer.png

Reporter

Spinach is an example of a reporter RNA aptamer,which emits the green fluorescence like GFP when it binds to a fluorophore (DFHBI), which is a derivative fluorophore of GFP. DFHBI doesn't emit fluorescence alone. That is to say, if fluorescence is observed after DFHBI is added into liquid culture, it manifests that Spinach is expressed. If Spinach exists, it combines with DFHBI and DFHBI emits fluorescence. Hence, by using Spinach, it’s possible not only to image RNA directly, but also to reflect the transcription level accurately, which can’t be confirmed via stable protein because RNA is degraded faster than protein.
We strongly suggest Spinach aptamer as a reporter of RNA. SPINACHの説明.png

Fusion

Intending to construct our oscillation circuit, we have to combine two modules into one strand. When we combine two modules, the function of the modules may be inhibited by interactions of secondary structures. In case of RNA, it is relatively easier to predict the morecules' structure. We estimated the RNA structure to check whether or not unindicatd duplex is formed by open tool.

Experiment

After we constructed functional RNA generator, we checked the transcription of the RNA parts. To confirm this, we performed RT-PCR.
samples are following:
Negative control

  • Non-promoter: Spinach-DT

Experimental group
唯一のexperiment.png
We also checked whether fusion RNA we designed functions or not considering secondary structure with Centroid Fold[6]

Result

RT-PCR

We performed RT-PCR to confirm transcription of TetR aptamer(left) and Spinach(center).
ElectrophoresisRT1.png ElectrophoresisRT2.png

Structure Prediction

2013IGKUprojectRNAfusionCENTROIDattenuatoraptamer.png Antisense spinach.pngwith Centroid Fold*

Conclusion

We confirmed the transcription of TetR aptamer, antisense-Spinach, Spinach, and GFP by using RT-PCR method.
We predicted secondary structure of fusion RNA: atenuator-TetRaptamer and antisence-Spinach with centroid fold. It seems to be the expected structure and to function as expected.
We got ready for the construction of the oscilator circuit in wet lab.

Future work

To solve simultaneous differential equations meaning oscilation model numerically, we will try to found exact values of some constants. For example, to determine binding constant between TetR and TetR aptamer, we will try to build up assay method and to get quantitative data.
1. qualitative assay TatR aptamer
To confirm the act of TetR aptamer inducing Ptet ,we are constructing IPTG-inducble TetR aptamer to express GFP. As negative controls, we use RNA with antisense, attenuator, Spinach, no-RNA and attenuator-TetR aptamer. As positive controls, GFP is constitutively expressed.
3, qualitatively Spinach assay (visual recognition & fluorescence microscopes)
We will check that DFHBI fluorescence on a plate with Spinach.
We will cultivate IPTG-inducible Spinach in a liquid culture under a shading condition, and add DFHBI. Then we check whether this sample fluorescence after centrifugation. We also check Spinach-GFP and antisense-Spinach.
After that, we will substitute the values for oscilation model and try to solve simulate. Moreover we will continue assaying of our parts.
Then, after finishing construction of gene circuits that makes oscilation, we assay the oscilation circuit in wet lab. Our plans for the construction and assay are shown in this page
Finaly, we compare results of wet lab and dry lab and discuss a point in common/difference between the results.

Parts List

<groupparts>iGEM013 Kyoto</groupparts>