Team:OUC-China

From 2013.igem.org

(Difference between revisions)
Line 119: Line 119:
   text-shadow: 0 0 1px rgba(0,0,0,.05), 0 1px 2px rgba(0,0,0,.3);
   text-shadow: 0 0 1px rgba(0,0,0,.05), 0 1px 2px rgba(0,0,0,.3);
-
   background: #1abc9c;
+
   background: ;
   box-shadow: 0 1px 2px rgba(0,0,0,.25);
   box-shadow: 0 1px 2px rgba(0,0,0,.25);
}
}
Line 325: Line 325:
         </li>
         </li>
-
         <li style="background-image: url('img/subway.jpg');">
+
         <li style="background-color:#1abc9c;">
           <div class="inner">
           <div class="inner">
             <h1>Come on! OUC IGEM 2013</h1>
             <h1>Come on! OUC IGEM 2013</h1>
Line 334: Line 334:
         </li>
         </li>
-
         <li style="background-image: url('img/shop.jpg');">
+
         <li style="background-color:#1abc9c;">
           <div class="inner">
           <div class="inner">
             <h1>Come on! OUC IGEM 2013</h1>
             <h1>Come on! OUC IGEM 2013</h1>

Revision as of 11:47, 27 September 2013

Abstract

Putting biological resources into production has now become a hot topic since the development of technology and the draining of natural resources. For example, research about biofuel and biochemistry is now flourishing. But biological products have drawbacks of being inefficient and not broad-spectrum. Inspired by eukaryotic membranous organelles, we aim to construct a prokaryotic membranous organelle to realize division of work inside the cell and improve the efficiency of production. How could a membrane be constructed in a Prokaryote? The answer may lie in this species: Magnetosprillum Magneticum, which can form a natural intracellular membrane. But this bacteria is slow-growing and requires demanding culture conditions, so the purpose of our project is to reconstruct the magnetosome membrane in E.coli, creating better conditions for efficient biological production.

Learn more

Specialist of our project

1.We designed an artificial prokaryotic membranous organelle which is capable of anchoring proteins, opening up new possibilities for intracellular biochemistry reactions.
2.We took advantage of the 3D structure of RNA, using ribosomes as a barrier to stabilize RNA.
3.We used Microfluidic Technology to detect the magnetism of our magnetic bacteria, Magnetospirillum Magneticum.
4.We preserved Magnetospirillum Magneticum AMB-1 mamAB genes in E.coli, prevented the genes lose when AMB-1 strain was cultured in High oxygen partial pressure environment.

Learn more

Reconstructing the Magnetosome Membrane in E. coli

Learn more