Team:OUC-China

From 2013.igem.org

(Difference between revisions)
Line 234: Line 234:
       cursor: pointer;
       cursor: pointer;
     }
     }
 +
 +
/*features*/
 +
.features {
 +
  overflow: hidden;
 +
  padding: 50px 0;
 +
 +
  background: #f7f7f6;
 +
  box-shadow: inset 0 -1px 3px rgba(0,0,0,.03);
 +
}
 +
  .features li {
 +
    position: relative;
 +
    padding: 0 25px 0 40px;
 +
    list-style: none;
 +
 +
    width: 25%;
 +
    float: left;
 +
  }
 +
    .features li:before {
 +
      content: '';
 +
      position: absolute;
 +
      left: 0;
 +
      top: 0;
 +
 +
      display: block;
 +
      width: 24px;
 +
      height: 22px;
 +
 +
      background: url('img/icons.png');
 +
    }
 +
      .features li.browser:before { background-position: 0 -44px; }
 +
      .features li.height:before { background-position: 0 -22px; }
 +
      .features li.responsive:before { background-position: 0 -66px; }
 +
  .features b {
 +
    display: block;
 +
    padding-bottom: 6px;
 +
  }
 +
.wrap {
 +
  margin: 0 auto;
 +
  max-width: 1170px;
 +
}
</style>
</style>
</head>
</head>
Line 347: Line 387:
   </div>
   </div>
   <!--the slidershow end-->
   <!--the slidershow end-->
-
   <div class="container">
+
   <div class="features">
-
    <div class="jumbotron">
+
      <ul class="wrap">
-
        <h1>Features Of Our Project</h1>
+
      <h3><b>Features Of Our Project</b></h3><hr>
-
         <p class="lead">1.We designed an artificial prokaryotic membranous organelle which is capable of anchoring proteins, opening up new possibilities for intracellular biochemistry reactions.<br/>2.We took advantage of the 3D structure of RNA, using ribosomes as a barrier to stabilize RNA.<br/>3.We used Microfluidic Technology to detect the magnetism of our magnetic bacteria, <i>Magnetospirillum Magneticum</i>.<br/>4.We preserved <i>Magnetospirillum Magneticum</i> AMB-1 <i>mam</i>AB genes in <i>E.coli</i>, prevented the genes lose when AMB-1 strain was cultured in high oxygen partial pressure environment.
+
         <li>
-
    </p>
+
          <b><span class="glyphicon glyphicon-ok-sign"></span> Artificial Organelle</b>
-
        <a class="btn btn-large btn-success" href="#">Learn more</a>
+
          <p>We designed an artificial prokaryotic membranous organelle which is capable of anchoring proteins, opening up new possibilities for intracellular biochemistry reactions.</p>
-
      </div>
+
          <a class="btn btn-info" href="https://2013.igem.org/Team:OUC-China/Results">Learn more</a>
-
    <hr>
+
        </li>
-
  </div>
+
        <li>
-
   <div class="jumbotron">
+
          <b><span class="glyphicon glyphicon-ok-sign"></span> RNA Guardian</b>
-
         <h1>Introduction</h1>
+
          <p>We took advantage of the 3D structure of RNA, using ribosomes as a barrier to stabilize RNA.</p>
 +
          <a class="btn btn-info" href="https://2013.igem.org/Team:OUC-China/Instruction">Learn more</a>
 +
        </li>
 +
        <li>
 +
          <b><span class="glyphicon glyphicon-ok-sign"></span> Microfluidic</b>
 +
          <p>We used Microfluidic Technology to detect the magnetism of our magnetic bacteria, <i>Magnetospirillum Magneticum</i>.</p>
 +
          <a class="btn btn-info" href="https://2013.igem.org/Team:OUC-China/Microfluidics">Learn more</a>
 +
 
 +
        </li>
 +
        <li>
 +
          <b><span class="glyphicon glyphicon-ok-sign"></span> Preserving <i>mam</i>AB genes</b>
 +
          <p>We preserved <i>Magnetospirillum Magneticum</i> AMB-1 <i>mam</i>AB genes in <i>E.coli</i>, prevented the genes lose when AMB-1 strain was cultured in high oxygen partial pressure environment.</p>
 +
          <a class="btn btn-info" href="https://2013.igem.org/Team:OUC-China/Design">Learn more</a>
 +
        </li>
 +
      </ul>
 +
    </div>
 +
   <div class="container jumbotron">
 +
         <h1>Abstract</h1>
         <p class="lead">Putting biological resources into production has now become a hot topic since the development of technology and the draining of natural resources. For example, research about biofuel and biochemistry is now flourishing. But biological products have drawbacks of being inefficient and not broad-spectrum. Inspired by eukaryotic membranous organelles, we aim to construct a prokaryotic membranous organelle to realize division of work inside the cell and improve the efficiency of production.  
         <p class="lead">Putting biological resources into production has now become a hot topic since the development of technology and the draining of natural resources. For example, research about biofuel and biochemistry is now flourishing. But biological products have drawbacks of being inefficient and not broad-spectrum. Inspired by eukaryotic membranous organelles, we aim to construct a prokaryotic membranous organelle to realize division of work inside the cell and improve the efficiency of production.  
-
How could a membrane be constructed in a prokaryote? The answer may lie in this species: <i>Magnetosprillum Magneticum</i>, which can form a natural intracellular membrane. But this bacteria is slow-growing and requires demanding culture conditions, so the purpose of our project is to reconstruct the magnetosome membrane in <i>E.coli</i>, creating better conditions for efficient biological production.</p>
+
How could a membrane be constructed in a Prokaryote? The answer may lie in this species: <i>Magnetosprillum Magneticum</i>, which can form a natural intracellular membrane. But this bacteria is slow-growing and requires demanding culture conditions, so the purpose of our project is to reconstruct the magnetosome membrane in <i><i>E.coli</i></i>, creating better conditions for efficient biological production.</p>
         <a class="btn btn-large btn-success" href="#">Learn more</a>
         <a class="btn btn-large btn-success" href="#">Learn more</a>
       </div>
       </div>
Line 370: Line 427:
</header>
</header>
-
         <p class="lead" ><font color="#0099FF">Reconstructing the Magnetosome Membrane in <i>E.coli</i></font></p>
+
         <p class="lead" ><font color="#0099FF">Reconstructing the Magnetosome Membrane in E. coli</font></p>
         <a class="btn btn-large btn-success" href="#">Learn more</a>
         <a class="btn btn-large btn-success" href="#">Learn more</a>
       </div>
       </div>

Revision as of 18:37, 27 September 2013

    Features Of Our Project


  • Artificial Organelle

    We designed an artificial prokaryotic membranous organelle which is capable of anchoring proteins, opening up new possibilities for intracellular biochemistry reactions.

    Learn more
  • RNA Guardian

    We took advantage of the 3D structure of RNA, using ribosomes as a barrier to stabilize RNA.

    Learn more
  • Microfluidic

    We used Microfluidic Technology to detect the magnetism of our magnetic bacteria, Magnetospirillum Magneticum.

    Learn more
  • Preserving mamAB genes

    We preserved Magnetospirillum Magneticum AMB-1 mamAB genes in E.coli, prevented the genes lose when AMB-1 strain was cultured in high oxygen partial pressure environment.

    Learn more

Abstract

Putting biological resources into production has now become a hot topic since the development of technology and the draining of natural resources. For example, research about biofuel and biochemistry is now flourishing. But biological products have drawbacks of being inefficient and not broad-spectrum. Inspired by eukaryotic membranous organelles, we aim to construct a prokaryotic membranous organelle to realize division of work inside the cell and improve the efficiency of production. How could a membrane be constructed in a Prokaryote? The answer may lie in this species: Magnetosprillum Magneticum, which can form a natural intracellular membrane. But this bacteria is slow-growing and requires demanding culture conditions, so the purpose of our project is to reconstruct the magnetosome membrane in E.coli, creating better conditions for efficient biological production.

Learn more

Reconstructing the Magnetosome Membrane in E. coli

Learn more