Team:SJTU-BioX-Shanghai/Prospect

From 2013.igem.org

(Difference between revisions)
(CRISPRi-on)
(CRISPRi-on)
Line 28: Line 28:
<!----------------------------------------------------从这里开始写wiki--------------------------------->
<!----------------------------------------------------从这里开始写wiki--------------------------------->
=CRISPRi-on=
=CRISPRi-on=
 +
<br>
At present, our Metabolic Gear Box, which combines CRISPRi with light sensors, only down-regulates three genes of a pathway. However, in many other cases, genes in a synthetic pathway are supposed to be up-regulated in order to acquire the most products.
At present, our Metabolic Gear Box, which combines CRISPRi with light sensors, only down-regulates three genes of a pathway. However, in many other cases, genes in a synthetic pathway are supposed to be up-regulated in order to acquire the most products.
 +
<br>
A newly devised tool, CRISPR-on, has provided some inception. CRISPR-on devisers simply fuse a transcriptional activation domain with dCas9 to create a sequence-specific transcription activating tool. CRISPR-on has been proved to be effective in human and mouse. We expect to conduct similar work in our bio-factory, ''Escherichia coli''.
A newly devised tool, CRISPR-on, has provided some inception. CRISPR-on devisers simply fuse a transcriptional activation domain with dCas9 to create a sequence-specific transcription activating tool. CRISPR-on has been proved to be effective in human and mouse. We expect to conduct similar work in our bio-factory, ''Escherichia coli''.
 +
<br>
Our plan is to fuse alpha factors with dCas9 protein, which has previously been proved to be a successful method to create blue-light-induced transcription factors (Camsund et al., 2011). Our design is shown below.
Our plan is to fuse alpha factors with dCas9 protein, which has previously been proved to be a successful method to create blue-light-induced transcription factors (Camsund et al., 2011). Our design is shown below.
 +
<br>
[[File:CRISPR-on.png|thumb|600px]]
[[File:CRISPR-on.png|thumb|600px]]
 +
<br>
However, to integrate CRISPRi and CRISPR-on would never be an easy task, since sgRNA for CRISPR-on is supposed to target upstream of promoter, rendering it necessary to incorporate logical switches.
However, to integrate CRISPRi and CRISPR-on would never be an easy task, since sgRNA for CRISPR-on is supposed to target upstream of promoter, rendering it necessary to incorporate logical switches.
 +
<br>
=Smaller Light Sensor=
=Smaller Light Sensor=

Revision as of 03:29, 28 September 2013

CRISPRi-on


At present, our Metabolic Gear Box, which combines CRISPRi with light sensors, only down-regulates three genes of a pathway. However, in many other cases, genes in a synthetic pathway are supposed to be up-regulated in order to acquire the most products.
A newly devised tool, CRISPR-on, has provided some inception. CRISPR-on devisers simply fuse a transcriptional activation domain with dCas9 to create a sequence-specific transcription activating tool. CRISPR-on has been proved to be effective in human and mouse. We expect to conduct similar work in our bio-factory, Escherichia coli.
Our plan is to fuse alpha factors with dCas9 protein, which has previously been proved to be a successful method to create blue-light-induced transcription factors (Camsund et al., 2011). Our design is shown below.

CRISPR-on.png


However, to integrate CRISPRi and CRISPR-on would never be an easy task, since sgRNA for CRISPR-on is supposed to target upstream of promoter, rendering it necessary to incorporate logical switches.

Smaller Light Sensor

Absolutely Automatic