Team:UCL/Project

From 2013.igem.org

(Difference between revisions)
 
(27 intermediate revisions not shown)
Line 6: Line 6:
<script type="text/javascript" src="https://2013.igem.org/Team:UCL/static/head.js?action=raw&ctype=text/javascript">  
<script type="text/javascript" src="https://2013.igem.org/Team:UCL/static/head.js?action=raw&ctype=text/javascript">  
</script>
</script>
 +
 +
<link rel="stylesheet" type="text/css" href="https://2013.igem.org/Team:UCL/static/subheadingstyles.css?action=raw&ctype=text/css" />
<script>
<script>
Line 37: Line 39:
<div id="container">
<div id="container">
-
<!-- START CONTENT ---------------------------------------------------------------------------------------------------->
+
<!-- START CONTENT-------------------------------------------------------------------------------------------------->
 +
<div class="gap">
 +
</div>
 +
 
 +
<div class="row_large">
 +
 
 +
<div class="col_left" style="width:100%;">
 +
 
 +
<p class="major_title">IGEM: INTELLIGENTLY GENETICALLY ENGINEERED MICROGLIA</p>
 +
<p class="minor_title">Synthetic Biology Fights Alzheimer's Disease</p>
 +
 
 +
<p class="abstract_text" style="color:#404040;">
 +
This year, the UCL iGEM team is taking a radical new step with synthetic biology. We intend to explore the potential application genetic engineering techniques on the brain, because it is the site of some of the most subtle, and many of the most devastating medical conditions. Alzheimer’s Disease is a neurodegenerative disease characterised by the loss of recent memory and intellectual functions. We have devised a genetic circuit for transfection into microglia, a novel chassis in which standard assembly has never been used, to boost their ability to break down senile plaques, which are associated with Alzheimer’s disease, as well as to support and protect endangered neurons from microglia-mediated neuroinflammation.
 +
<br><br>
 +
</p>
 +
<p class="abstract_text" style="color:#C14645;">
 +
Click the abstracts below to read more.
 +
</p>
 +
 
 +
</div>
 +
 +
</div>
 +
 
 +
 
 +
<div class="gap">
 +
</div>
 +
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/1/1a/CircuitOverviewMicroglia.gif" data-lightbox="image-1" title="Genetic Circuit Overview in Microglia UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/1/1a/CircuitOverviewMicroglia.gif">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Circuit">
 +
<p class="abstract_title">Circuit Overview</p>
 +
<p class="abstract_text">
 +
Our genetic circuit aims primarily to remove amyloid plaques in the brain, which are associated with Alzheimer’s disease, prevent neuroinflammation and support neurons.
 +
</p>
 +
</a>
 +
</div>
 +
 +
 +
</div>
 +
 +
<div class="gap">
 +
</div>
 +
 
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/1/18/Detectionucligem.gif" data-lightbox="image-1" title="Oxidative Stress Promoter for Plaque Detection UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/1/18/Detectionucligem.gif">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Detection">
 +
<p class="abstract_title">Detection</p>
 +
<p class="abstract_text">
 +
Senile plaques increase the rate of production of reactive oxygen species that are damaging to brain cells. We developed an oxidative stress promoter, in order to initiate the production of other circuit parts.
 +
 
 +
</p>
 +
</a>
 +
</div>
 +
 +
 +
</div>
 +
 +
<div class="gap">
 +
</div>
 +
 
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/5/57/Chemotaxisucligem.gif" data-lightbox="image-1" title="Chemotaxis in Microglia UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/5/57/Chemotaxisucligem.gif">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Chemotaxis">
 +
<p class="abstract_title">Insertion</p>
 +
<p class="abstract_text">
 +
The brain is an immune privileged organ and the security of the blood brain barrier makes it difficult to get all but the smallest molecules, such as glucose, from the rest of the body into the brain. This makes inserting our genetic circuit into the brain a trickier task than in most synthetic biomedical projects. Here we examine some plausible methods.
 +
 
 +
</p>
 +
</a>
 +
</div>
 +
 +
 +
</div>
 +
 +
<div class="gap">
 +
</div>
 +
 
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/4/46/Degradationucligem.gif" data-lightbox="image-1" title="Beta-Amyloid degradation by MMP-9 UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/4/46/Degradationucligem.gif">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Degradation">
 +
<p class="abstract_title">Degradation</p>
 +
<p class="abstract_text">
 +
We expressed and characterised a matrix metalloproteinase that is capable of degrading amyloid. By increasing its expression in de-activated microglia, we hope to reduce amyloid burden in Alzheimer’s disease.
 +
</p>
 +
</a>
 +
</div>
 +
 +
 +
</div>
 +
 +
<div class="gap">
 +
</div>
 +
 
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/8/8a/Selectablemarkerzeocin.gif" data-lightbox="image-1" title="Selectable Marker, Zeocin UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/8/8a/Selectablemarkerzeocin.gif">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Marker">
 +
<p class="abstract_title">Selectable Marker</p>
 +
<p class="abstract_text">
 +
We used resistance to zeocin, a cell killing glycoprotein, to act as a selectable marker for transformation/transfection in our chassis; E.coli, HeLa and microglia.
 +
 
 +
The biobrick that we made encoding zeocin resistance is a step forward for selectable markers in iGEM - the first one of its kind tailored for mammalian expression systems.
 +
 
 +
</p>
 +
</a>
 +
</div>
 +
 +
 +
</div>
 +
 +
<div class="gap">
 +
</div>
 +
 
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/e/e1/ChassisUCLigem2013.gif" data-lightbox="image-1" title="Chassis: E.coli, HeLa and Microglia UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/e/e1/ChassisUCLigem2013.gif">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Chassis">
 +
<p class="abstract_title">Chassis</p>
 +
<p class="abstract_text">
 +
We conducted our experiments in three chassis, creating recombinant plasmids in E.coli before expressing them in HeLa and finally primary and immortalised human microglia lines. Human brain cells have not been seen before in an iGEM project, with experiments in microglia coming as son as they arrive!
 +
</p>
 +
</a>
 +
</div>
 +
 +
 +
</div>
 +
 +
<div class="gap">
 +
</div>
 +
 
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/d/da/PartsUCligem2013.gif" data-lightbox="image-1" title="BioBrick Parts Submitted to the Registry UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/d/da/PartsUCligem2013.gif">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Parts">
 +
<p class="abstract_title">Parts</p>
 +
<p class="abstract_text">
 +
We submitted two parts to the registry; a new eukaryotic and prokaryotic selectable marker, and the protease, MMP-9.
 +
 
 +
 
 +
</p>
 +
</a>
 +
</div>
 +
 
 +
</div>
 +
 
 +
 
 +
<div class="gap">
 +
</div>
 +
 
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/8/8e/FuturedevelopmentsUCLigem2013.gif" data-lightbox="image-1" title="Looking beyond our summer lab work UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/8/8e/FuturedevelopmentsUCLigem2013.gif">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Developments">
 +
<p class="abstract_title">Future Developments</p>
 +
<p class="abstract_text">
 +
Our circuit design is far from finished; given sufficient time in the lab, we would have included several other important components, including the de-activating agent VIP and the support factor BDNF.
 +
</p>
 +
</a>
 +
</div>
 +
 +
 +
</div>
 +
 +
<div class="gap">
 +
</div>
 +
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/b/b4/ExperimentsUCLigem2013.gif" data-lightbox="image-1" title="Experiments UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/b/b4/ExperimentsUCLigem2013.gif">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Experiments">
 +
<p class="abstract_title">Experiments</p>
 +
<p class="abstract_text">
 +
Here we explain the wet-lab experiments that built our project. All of these experiments built the foundation of our project, allowing us to generate, test and subsequently submit biobricks to the registry.
 +
 
 +
This section includes experiments for both bacterial and mammalian lab that have been performed before the Lyon jamboree!
 +
</p>
 +
</a>
 +
</div>
 +
 +
 +
</div>
 +
 +
<div class="gap">
 +
</div>
 +
 
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/4/4c/Labook_pic.jpg" data-lightbox="image-1" title="Protocols UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/4/4c/Labook_pic.jpg">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Protocols">
 +
<p class="abstract_title">Lab Protocols</p>
 +
<p class="abstract_text">
 +
You cannot plan an experiment without the procedure. Here we have stored all of the protocols that were used in order to make out wet lab work possible.
 +
 
 +
This section includes protocols for both bacterial and mammalian lab experiments that have been performed before the Lyon jamboree!
 +
</p>
 +
</a>
 +
</div>
 +
 +
 +
</div>
 +
 
 +
<div class="gap">
 +
</div>
 +
 
 +
<div class="row_small">
 +
 +
<div class="col_illustration">
 +
<a href="https://static.igem.org/mediawiki/2013/b/b6/Silent_safety.jpg" data-lightbox="image-1" title="Safety First UCL iGEM 2013">
 +
<img src="https://static.igem.org/mediawiki/2013/b/b6/Silent_safety.jpg">
 +
</a>
 +
</div>
 +
 +
<div class="col_abstract">
 +
<a href="https://2013.igem.org/Team:UCL/Project/Safety">
 +
<p class="abstract_title">Safety</p>
 +
<p class="abstract_text">
 +
It is essential that both  personnel and experimental products are as safe as possible to avoid harm. Risk may be minimised by following safety procedures for any plausible dangerous situation that may occur in the laboratory.
 +
</p>
 +
</a>
 +
</div>
 +
 +
 +
</div>
 +
 +
<div class="gap">
 +
</div>
-
<!-- END CONTENT ------------------------------------------------------------------------------------------------------>
+
<!-- END CONTENT ---------------------------------------------------------------------------------------------------->
</div>
</div>

Latest revision as of 03:22, 5 October 2013

IGEM: INTELLIGENTLY GENETICALLY ENGINEERED MICROGLIA

Synthetic Biology Fights Alzheimer's Disease

This year, the UCL iGEM team is taking a radical new step with synthetic biology. We intend to explore the potential application genetic engineering techniques on the brain, because it is the site of some of the most subtle, and many of the most devastating medical conditions. Alzheimer’s Disease is a neurodegenerative disease characterised by the loss of recent memory and intellectual functions. We have devised a genetic circuit for transfection into microglia, a novel chassis in which standard assembly has never been used, to boost their ability to break down senile plaques, which are associated with Alzheimer’s disease, as well as to support and protect endangered neurons from microglia-mediated neuroinflammation.

Click the abstracts below to read more.