Team:HokkaidoU Japan/Promoter

From 2013.igem.org

(Difference between revisions)
Line 1: Line 1:
{{Team:HokkaidoU_Japan/header_Maestro}}
{{Team:HokkaidoU_Japan/header_Maestro}}
<html>
<html>
 +
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML"></script>
 +
<script type="text/x-mathjax-config">MathJax.Hub.Config({ TeX: { equationNumbers: {autoNumber: "AMS"} } });</script>
 +
   <div id="common-header-bottom-background">
   <div id="common-header-bottom-background">
     <div class="wrapper">
     <div class="wrapper">
Line 12: Line 15:
     <div id="hokkaidou-contents">
     <div id="hokkaidou-contents">
<!-- end header / begin contents -->
<!-- end header / begin contents -->
-
<script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML">
 
-
</script>
 
-
<script type="text/x-mathjax-config">
 
-
  MathJax.Hub.Config({ TeX: { equationNumbers: {autoNumber: "AMS"} } });
 
-
</script>
 
Line 27: Line 25:
\end{align*}
\end{align*}
-
 
+
\[
 +
p_i \propto \exp\left(-\frac{E_i}{\kappa_{\mathrm{B}}T}\right)
<!-- end contents / begin footer -->
<!-- end contents / begin footer -->
     </div>
     </div>

Revision as of 17:48, 26 September 2013

Maestro E.coli

Promoter

\begin{align*} p&=\frac{W_{bound}}{W_{unbound}+W_{bound}} \\[6pt] &=\frac{ \frac{P}{N_{\mathrm{NS}}} \exp\left(-\frac{\varepsilon_{\mathrm{S}} - \varepsilon_{\mathrm{NS}}}{\kappa_{\mathrm{B}}T} \right) }{1+\frac{P}{N_{\mathrm{NS}}} \exp\left(-\frac{\varepsilon_{\mathrm{S}} - \varepsilon_{\mathrm{NS}}}{\kappa_{\mathrm{B}}T} \right) } \\[6pt] \mathrm{suppose\ that} &\frac{P}{N_{\mathrm{NS}}} \exp\left(-\frac{\varepsilon_{\mathrm{S}} - \varepsilon_{\mathrm{NS}}}{\kappa_{\mathrm{B}}T} \right) \ll 1 \\[6pt] &\approx \frac{P}{N_{\mathrm{NS}}} \exp\left(-\frac{\varepsilon_{\mathrm{S}} - \varepsilon_{\mathrm{NS}}}{\kappa_{\mathrm{B}}T} \right) \\[6pt] &\propto \exp\left(-\frac{\varepsilon_{-35}}{\kappa_{\mathrm{B}}T} \right) \end{align*} \[ p_i \propto \exp\left(-\frac{E_i}{\kappa_{\mathrm{B}}T}\right)