Team:Wageningen UR

From 2013.igem.org

(Difference between revisions)
Line 154: Line 154:
</ul>
</ul>
</div>
</div>
-
 
<div class="projecttour">
<div class="projecttour">
-
 
<div class="fb">     
<div class="fb">     
     <div class="fb-like" data-href="https://www.facebook.com/pages/IGEM-2013-Wageningen/552208634829614/" data-width="300" data-layout="button_count" data-show-faces="false" data-send="false"></div>
     <div class="fb-like" data-href="https://www.facebook.com/pages/IGEM-2013-Wageningen/552208634829614/" data-width="300" data-layout="button_count" data-show-faces="false" data-send="false"></div>
</div>
</div>
-
 
     <a href="https://2013.igem.org/Team:Wageningen_UR/Why_Aspergillus_nigem" class="tour"><span class="startt">Start</span><span class="tourr">Tour</span></a>
     <a href="https://2013.igem.org/Team:Wageningen_UR/Why_Aspergillus_nigem" class="tour"><span class="startt">Start</span><span class="tourr">Tour</span></a>
-
 
<div class="twt">
<div class="twt">
     <a href="https://twitter.com/iGemWUR2013" class="twitter-follow-button" data-show-count="false">Follow @iGemWUR2013</a>
     <a href="https://twitter.com/iGemWUR2013" class="twitter-follow-button" data-show-count="false">Follow @iGemWUR2013</a>
     <script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+'://platform.twitter.com/widgets.js';fjs.parentNode.insertBefore(js,fjs);}}(document, 'script', 'twitter-wjs');</script>
     <script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+'://platform.twitter.com/widgets.js';fjs.parentNode.insertBefore(js,fjs);}}(document, 'script', 'twitter-wjs');</script>
</div>
</div>
-
 
</div>
</div>
-
 
<div id="wrapper">
<div id="wrapper">
-
 
<div class="half left">
<div class="half left">
<hr/></html>
<hr/></html>
Line 183: Line 176:
b) The development of a versatile molecular toolkit to facilitate the analysis of its physiology including in-situ ATP and pH biosensors, chromoproteins to screen transformants, and fluorescent cytoskeleton proteins to visualize A. niger’s cellular structure.<br/>
b) The development of a versatile molecular toolkit to facilitate the analysis of its physiology including in-situ ATP and pH biosensors, chromoproteins to screen transformants, and fluorescent cytoskeleton proteins to visualize A. niger’s cellular structure.<br/>
c) An evolutionary engineering method to develop a host strain with reduced mycelial cohesiveness for improved productivity.</p>
c) An evolutionary engineering method to develop a host strain with reduced mycelial cohesiveness for improved productivity.</p>
-
 
<hr/></html>
<hr/></html>
Line 216: Line 208:
     <div class="clearfix"></div>
     <div class="clearfix"></div>
</div>
</div>
-
 
</div>
</div>
<div class="half right">
<div class="half right">
-
 
<hr/></html>
<hr/></html>
Line 233: Line 223:
             <span><a href="https://2013.igem.org/Team:Wageningen_UR/Host_engineering"><img src="https://static.igem.org/mediawiki/2013/b/b5/Hostcell.png" alt="Host engineering"/></a></span>
             <span><a href="https://2013.igem.org/Team:Wageningen_UR/Host_engineering"><img src="https://static.igem.org/mediawiki/2013/b/b5/Hostcell.png" alt="Host engineering"/></a></span>
         </div>
         </div>
-
 
         <div class="text one">
         <div class="text one">
             <span class="line"><a href="https://2013.igem.org/Team:Wageningen_UR/Secondary_metabolites">Secondary metabolites</a></span>
             <span class="line"><a href="https://2013.igem.org/Team:Wageningen_UR/Secondary_metabolites">Secondary metabolites</a></span>
Line 244: Line 233:
         </div>
         </div>
     </div>
     </div>
-
 
     <div class="scale">
     <div class="scale">
             <a href="#" id="one" class="on">Secondary metabolites</a>
             <a href="#" id="one" class="on">Secondary metabolites</a>
Line 252: Line 240:
             <div class="clearfix"></div>
             <div class="clearfix"></div>
     </div>
     </div>
-
 
<hr/></html>
<hr/></html>
Line 268: Line 255:
             <div class="clearfix"></div>
             <div class="clearfix"></div>
         </div>
         </div>
-
 
 
</div>
</div>
-
 
-
 
-
 
<div id="sponsors">
<div id="sponsors">
         <h2>Sponsors</h2>
         <h2>Sponsors</h2>
Line 287: Line 270:
         <a href="http://www.wageningenur.nl/nl/Expertises-Dienstverlening/Onderzoeksinstituten/food-biobased-research.htm" target="_blank" class="sponsor" title="Wageningen UR - Food & Biobased Research"><img src="https://static.igem.org/mediawiki/2013/f/f3/Wageningen_ur_fbr.png" alt="Wageningen UR - Food & Biobased Research" style="display:block; vertical-align:bottom;"/></a>
         <a href="http://www.wageningenur.nl/nl/Expertises-Dienstverlening/Onderzoeksinstituten/food-biobased-research.htm" target="_blank" class="sponsor" title="Wageningen UR - Food & Biobased Research"><img src="https://static.igem.org/mediawiki/2013/f/f3/Wageningen_ur_fbr.png" alt="Wageningen UR - Food & Biobased Research" style="display:block; vertical-align:bottom;"/></a>
         <a href="http://www.wageningenur.nl/en/Benefactors/For-Applicants/Middelhoven-Fund.htm" target="_blank" class="sponsor" title="Middelhoven Fund"><img src="https://static.igem.org/mediawiki/2013/4/4d/Middelhoven.png" alt="Middelhoven Fund" style="display:block; vertical-align:bottom;"/></a>
         <a href="http://www.wageningenur.nl/en/Benefactors/For-Applicants/Middelhoven-Fund.htm" target="_blank" class="sponsor" title="Middelhoven Fund"><img src="https://static.igem.org/mediawiki/2013/4/4d/Middelhoven.png" alt="Middelhoven Fund" style="display:block; vertical-align:bottom;"/></a>
-
 
-
 
-
 
         <div class="clearfix"></div>
         <div class="clearfix"></div>
</div>
</div>

Revision as of 23:28, 4 October 2013

StartTour

Introduction

The discovery of secondary metabolites has had a profound impact on the development of human medicines such as penicillins, cephalosporins, et cetera. However, the widespread deployment of pharmaceuticals derived from secondary metabolites is severely limited by our ability to implement economically viable large-scale production systems. While advances in metabolic engineering and process technology have allowed the biobased production of fuels and chemicals to occur at an unprecedented scale, the production of many useful secondary metabolites has lagged behind. This is in part due to the slow growth and low productivity of the organisms that naturally produce these compounds, but also due to the complexity of the biochemical pathways involved in their biosynthesis. Therefore, using synthetic biology tools to identify, optimize and transplant these biosynthetic pathways into more productive host organisms is a major opportunity to overcome current technological limitations and ultimately to disseminate crucial medical treatments to people without the means to afford pharmaceuticals produced via traditional organic synthesis.

In order to pave the way for next-generation metabolic engineering, it was necessary to go beyond established standards. Escherichia coli is undoubtedly the most well-characterized organism in existence and has been the primary workhorse of fundamental synthetic biology research. However, despite the spectacular achievements in understanding and manipulating all levels of its physiology, when it comes to industrial-scale production, E. coli is far from an ideal cell factory. In contrast, yeasts and fungi are naturally more robust, more productive, and are easier to separate in downstream processing. The filamentous fungus Aspergillus niger is widely used in the production of organic acids due to its unmatched ability to secrete metabolites. Due to its inherent biosynthetic capabilities, the recent development of effective genome engineering tools makes it an ideal platform for advanced metabolic engineering applications.

In order to establish A. niger as a viable platform organism, we took a threefold approach:
a) The modularization and refactoring of a heterologous biosynthetic enzyme complex.
b) The development of a versatile molecular toolkit to facilitate the analysis of its physiology including in-situ ATP and pH biosensors, chromoproteins to screen transformants, and fluorescent cytoskeleton proteins to visualize A. niger’s cellular structure.
c) An evolutionary engineering method to develop a host strain with reduced mycelial cohesiveness for improved productivity.


Achievements

Bronze medalBronze medal

Team registration

Complete Judging form

Team Wiki

Present a poster and a talk at the iGEM Jamboree

Document at least one new standard BioBrick Part or Device used in your project/central to your project and submit this part to the iGEM Registry

Silver medalSilver medal

Experimentally validate that at least one new BioBrick Part or Device of your own design and construction works as expected

Submit this new part to the iGEM Parts Registry

Your project may have implications for the environment, security, safety and ethics and/or ownership and sharing. Describe one or more ways in which these or other broader implications have been taken into consideration in the design and execution of your project

Silver medalGold medal

Help any registered iGEM team from another school or institution by, for example, characterizing a part, debugging a construct, or modeling or simulating their system

Your project may have implications for the environment, security, safety and ethics and/or ownership and sharing. Describe a novel approach that your team has used to help you and others consider these aspects of the design and outcomes of synthetic biology efforts. Please justify its novelty and how this approach might be adapted and scaled for others to use

Sponsors