Team:UT-Tokyo/Modeling

From 2013.igem.org

(Difference between revisions)
Line 1: Line 1:
{{:Team:UT-Tokyo/Template/Style}}
{{:Team:UT-Tokyo/Template/Style}}
<html>
<html>
-
    <link href='http://fonts.googleapis.com/css?family=Source+Sans+Pro:200,300,300italic,400,600,700' rel='stylesheet' type='text/css'>
+
<link
 +
href='http://fonts.googleapis.com/css?family=Source+Sans+Pro:200,300,300italic,400,600,700'
 +
rel='stylesheet' type='text/css'>
<div id="global_wrapper">
<div id="global_wrapper">
-
    <div id="header">
+
<div id="header">
-
        <div class="logo">
+
<div class="logo">
-
        <img src="https://static.igem.org/mediawiki/2013/9/93/Clock_ecoli_paper5.png" height="120px">
+
<img
-
        </div>
+
src="https://static.igem.org/mediawiki/2013/9/93/Clock_ecoli_paper5.png"
-
        <div class="wrapper">
+
height="120px">
-
            <div class="box">
+
</div>
-
            The contents are...
+
<div class="wrapper">
-
                <ol class="menu">
+
<div class="box">Thanks for your visiting our team wiki!</div>
-
                    <li><span class="mhead">Multicellular Analog Clock</span>
+
</div>
-
                    <ol class="menu">
+
-
                        <li><a href="#Overview">Overview</a></li>
+
-
                        <li><a href="#DDEModel">DDE Model</a></li>
+
-
                    </ol>
+
-
                    </li>
+
-
                    <li><span class="mhead">RNA Silencing</span>
+
-
                    <ol class="menu">
+
-
                        <li><a href="#Overview">Overview</a></li>
+
-
                        <li><a href="#DDEModel">DDE Model</a></li>
+
-
                    </ol>
+
-
                    </li>
+
-
                </ol>
+
-
            </div>
+
-
        </div>
+
</html>
</html>
-
{{:Team:UT-Tokyo/Template/Header1|subpagename=MODELING}}
+
{{:Team:UT-Tokyo/Template/Header1|subpagename=TEAM}}
<html>
<html>
-
        <div id="contents">
+
<div id="contents">
-
</p>
+
<h1 id="Students">Students</h1>
-
<h1 id="Multicellular_Analog_Clock">Multicellular Analog Clock</h1>
+
-
            <h2 id="Overview">Overview</h2>
+
-
            <p class="ini"> Our concept of the multicellular analog clock is based on qualitative assumption such as how negative feedback loop behaves, how AHL diffuses, and so on. To ascertain our multicellular analog clock can function as an analogue clock, namely, to confirm the feasibility of our cell-cell communication included gene circuit, and to deepen understanding of behavior of the system, we conducted the following simulation. </p>
+
-
            <p>Our model for multicellular analog clock consists of four parts: DDE analysis, parameter sensitivity analysis, parameter sweep, stochastic analysis. DDE analysis is to examine the feasibility of our project, and also provides the foundation for the other parts of analysis. Through parameter sensitivity analysis, we gained more insight of the relationship between input and output variables. The insight led to the third part of analysis, in which parameter sweep enabled us to grasp appropriate ranges for the identified sensitive parameters. Finally, we conducted stochastic analysis with the sensitive parameters fixed, and simulate our device's behavior under the actual conditions.
+
<h2>Background</h2>
-
            </p>
+
<h3>aaaaa</h3>
-
                   
+
<p class="ini">Genetic engineering has achieved numerous victories
-
            <h2 id="DDEModel"> DDE Model </h2>
+
both in basic and applied biology. However, there still remains room
-
                 
+
for progress in the area, especially in developing new tools. For
-
           
+
instance, although the importance of cell-cell interaction has been
-
            <p class="ini">To simulate the cell-cell communication system, we developed a delayed differential equation model. The equation used in the model are followings. The variables are described in the following table. </p>
+
emphasized, there are limited number of tools in bioengineering to
-
            <img src="https://static.igem.org/mediawiki/2013/7/70/Ddes.png" class="figure">
+
utilize it. Controlling interaction among microorganisms will help
 +
understanding living things and constructing completely novel
 +
multicellular systems.</p>
-
<p> In our cell-cell communication system, the major kinetic events are: mCherry synthesis and degradation, LuxI synthesis and degradation, TetR synthesis and degradation, AHL synthesis and degradation. These kinetic events are contained in the equations. The following describes how the equations are developed.
+
<h2 id="Project_Summary">Project Summary</h2>
-
</p>
+
-
<ul>
 
-
<li>mCherry synthesis and degradation
 
-
<li>LuxI synthesis and degradation</li>
 
-
<li>TetR synthesis and degradation</li>
 
-
<li>AHL synthesis and degradation</li>
 
-
</ul>
 
-
            <h1 id="RNA_Silencing">RNA Silencing</h1>
+
<p class="ini">aaaaaaaaaaaaaaa</p>
-
        </div>
+
-
    </div>
+
-
    <div id="footer">
+
</div>
 +
</div>
-
    </div>
+
<div id="footer"></div>
</div>
</div>

Revision as of 16:43, 27 September 2013

           TEAM
       

Students

Background

aaaaa

Genetic engineering has achieved numerous victories both in basic and applied biology. However, there still remains room for progress in the area, especially in developing new tools. For instance, although the importance of cell-cell interaction has been emphasized, there are limited number of tools in bioengineering to utilize it. Controlling interaction among microorganisms will help understanding living things and constructing completely novel multicellular systems.

Project Summary

aaaaaaaaaaaaaaa