Team:HUST-China/Modelling/Stability

From 2013.igem.org

Stability of DDEs

Goal

To analyze whether it is stable against environment changes.

Results

Basing on the equations, since applying their Taylor series makes the equations formed in a linear one keeping the topology of the solution to the original equations, the characteristic equations can be presented: $$E(\mu) = \left(\mu+\lambda\frac{\gamma}{(Ce+a)^2}\right)(\mu+d_{a/r})\left(\mu+k_{fa}+\lambda\frac{\gamma}{(Ce+a_{uf})^2}\right)-k_{fa}T_acopy_a(k_3E_1+k_4E_2+k_5E_3) = 0$$ $$\begin{cases} E_1 = \dfrac{\frac{2a}{a_0}e^{-2\mu \tau}\left(1+\frac{r^4}{r_0}e^{-4\mu \tau}\right)}{\left(1+\frac{r^4}{r_0}e^{-4 \mu \tau}+\frac{a^2}{a_0}e^{-2 \mu\tau}\right)^2}\\ E_2 = \dfrac{2ae^{-2 \mu\tau}\frac{r^2}{r_0}e^{-2 \mu\tau}}{\left(1+\frac{r^4}{r_0}e^{-4 \mu\tau}+\frac{a^2}{a_0}e^{-2\mu\tau}\right)^2}\\ E_3 = \dfrac{\frac{2a}{a_0}e^{-2\mu \tau}}{\left(1+\frac{r^4}{r_0}e^{-4 \mu\tau}+\frac{a^2}{a_0}e^{-2\mu\tau}\right)^2} \end{cases}$$ If there were at least one periodical solution, the equation should have at least one imaginary root.
Denote$ \begin{cases} c_1 = \lambda\frac{\gamma}{(Ce+a)^2}\\ c_2 = d_{a/r}\\ c_3 = k_{fa}+\lambda\frac{\gamma}{(Ce+a)^2}\\ c_4 = k_{fa}T_a(k_3E_1+k_4E_2+k_5E_3)copy_a \end{cases} $
Namely, $E(\mu) = (\mu+c_1)(\mu+c_2)(\mu+c_3)-c_4 = 0$ has imaginary root(s).
Set $\mu = iy$, $y\in R$ Thus $iy(c_1c_2+c_2c_3+c_1c_3-y^2)-(c_1+c_2+c_3)y^2+c_1c_2c_3 = c_4$ is required for imaginary root(s).
Namely, $ \begin{cases} y(c_1c_2+c_2c_3+c_1c_3-y^2) = Im(c_4) \\ -(c_1+c_2+c_3)y^2+c_1c_2c_3 = Re(c_4) \end{cases} $
Namely $\|y(c_1c_2+c_2c_3+c_1c_3-y^2\|^2+\|-(c_1+c_2+c_3)y^2+c_1c_2c_3\|^2=\|c_4\|^2$
Set $x=y^2$
Thus the existence of periodical solution is equal to: $$x^3+(c_1^2+c_2^2+c_3^2)x^2+(c_1^2c_2^2+c_2^2c_3^2+c_1^2c_3^2)x+c_1^2c_2^2c_3^2 = (k_{fa}T_acopy_a)^2\left(\dfrac{\left(\frac{2a}{a_0}\right)^2\left(k_3^2+k_5^2\right)}{\left(1+\frac{r^4}{r_0}+\frac{a^2}{a_0}\right)^4}+\dfrac{\left(\frac{2ar^2}{r_0}\right)^2\left(r^4k_3^2+k_4^2\right)}{\left(1+\frac{r^4}{r_0}+\frac{a^2}{a_0}\right)^4}\right)$$ has at least one positive real root. Denote p, q, $\delta$ as coefficients related to parameters in DDEs. Due to the limited space, these coefficients can be found in supplementary data.
According to the Cardano's Formula, If $q<0$, $\delta>0$,then there exists a center of oscillation. In this case, derivative of period with respect to both Arabinose and IPTG are not 0.
If $q = 0$, $p<0$, then also exists a center of oscillation. In this case, derivative of period with respect to both Arabinose and IPTG are 0.
In fact, in our case - when Arabinose $\in [0,10] $ and IPTG $\in [0,10]$ - belongs to the first aspect, which means both Arabinose and IPTG contribute to the period.