Team:MIT/miRNA

From 2013.igem.org

(Difference between revisions)
Line 22: Line 22:
<div class="section" id="single">
<div class="section" id="single">
<h1>eYFP-target Characterization</h1>
<h1>eYFP-target Characterization</h1>
-
 
+
<p>The simplest receiver circuit is composed of constitutively expressed eYFP (under the hEF1a promoter), designed with target sites for either miR-451 or miR-503 in the 3' UTR. In addition, we include constitutively expressed tagBFP (also under the hEF1a promoter) as a control for transfection efficiency. This allows us to distinguish cells showing repression from cells that were simply not transfected efficiently.</p>
 +
<p>
</div><!-- end single-->
</div><!-- end single-->

Revision as of 13:29, 24 September 2013

iGEM 2012

Overview

  • Project Overview

miRNA Signal

  • Overview
  • siRNA Characterization
  • Exosome Isolation and Co-Culturing
  • Cell-Cell Co-Culturing

Protein Signals

  • Overview
  • GFP
  • rtTA3
  • Cre
  • L7Ae
  • Cas9-VP16

Novel DNA Sensor: Cas9 Split Venus Fusion

  • Overview
  • Leucine Zipper Fusion
  • DNA Sensing

Our BioBricks

  • Favorites
  • All BioBricks

Attributions

  • Attributions

Overview of miRNA repression

miRNA are short (22-24 nt) strands of RNA known to regulate gene expression through repression of mRNA. mRNA that contain the complementary sequence to the miRNA are targeted by the RNA-induced silencing complex and are selectively degraded, thus repressing protein production.

Our goal is to use miRNA as a signal for cell-cell communication. We believe this can be accomplished by the packaging of miRNA into exosomes, which would then carry the miRNA signal to a receiver cell. Further, certain miRNA seem to be selectively targeted to exosomes, through a mechanism which is poorly understood. It has been shown that in Jurkat T cells, exosomes are naturally enriched in miR-451 and miR-503. For this reason, we chose to use Jurkat cells as our sender cells and to design a receiver circuit which could detect these two miRNA.

eYFP-target Characterization

The simplest receiver circuit is composed of constitutively expressed eYFP (under the hEF1a promoter), designed with target sites for either miR-451 or miR-503 in the 3' UTR. In addition, we include constitutively expressed tagBFP (also under the hEF1a promoter) as a control for transfection efficiency. This allows us to distinguish cells showing repression from cells that were simply not transfected efficiently.

Exosome Isolation and Co-Culturing

Cell-Cell Co-Culturing