Team:Hong Kong CUHK/vs
From 2013.igem.org
Voltage Switch
Voltage Sensor Peptide (Protein Domain BBa_K1092006)
Voltage sensor peptide, from Aeropyrum pernix, is a protein domain found in a transmembrane potassium ion channel. It contains positively-charged 4 arginine residues, and also numerous hydrophobic leucine residues. Study has shown that this helical voltage sensor peptide is capable of moving within the membrane under external voltage. To further adapt this voltage sensor peptide into our project, we added in glycine serine flexible linker, and polyproline rigid linker.
ssDsbA-PDZ Ligand-Voltage Switch (Protein Domain BBa_K1092007)
It is a part of the voltage switch, which consist of the PDZ Ligand (BBa_K1092101) and the voltage sensor peptide (BBa_K1092006). PDZ Ligand can form dimers with PDZ domain (BBa_K1092102), which links this part together with the PDZ domain-Voltage sensor peptide (BBa_K1092008).
ssDsbA-PDZ Domain-Voltage Switch (Protein Domain BBa_K1092008)
It is a part of the voltage switch, which consist of the PDZ domain (BBa_K1092102) and the voltage sensor peptide (BBa_K1092006). PDZ Domain can form dimers with PDZ Ligand (BBa_K1092101), which links this part together with the PDZ ligand-Voltage sensor peptide (BBa_K1092007).
T7 – RBS – Voltage Sensor Peptide (Device BBa_K1092013)
It is a protein domain found in a transmembrane potassium ion channel from Aeropyrum pernix, which is highly voltage dependent. It contain positive charges from the 4 arginine residues, and also numerous leucine residues which give it high hydrophobicity. All these together make it an excellent voltage sensing peptide in the transmembrane region. Study has shown that this helical voltage sensor peptide is capable of moving across the membrane under external voltage, which is the key to the voltage dependence of the ion channel (PMID: 12721618). We make use of this feature to construct a novel voltage switch (BBa_K1092007 & BBa_K1092008), which consist of the PDZ domain (BBa_K1092102), PDZ ligand (BBa_K1092101), this voltage sensor peptide itself. To further adapt this voltage sensor peptide into our project, we added in two (GGGGS)3 flexible linker which serve to link other protein domains, and a (PE)5 linker which serve as a rigid rod that project from the sensor peptide to elongate it and increase the separation distance.
T7 - RBS - PDZ Domain - Voltage Sensor – RFP C Terminus (Protein Domain BBa_K1092024)
This is one protein fragment of the voltage switch system. PDZ domain is a part of dimer, linked to voltage sensor peptide (BBa_K1092006).
RFP N terminus (Protein Domain BBa_K1092105)
An RFP fragment adapted from the RFP part BBa_E1010, and its counterpart is the RFP C terminus (BBa_K1092106). It is adapted to be expressed downstream of a fusion protein such as our Voltage switch parts (BBa_K1092023 & BBa_K1092024). It is the N terminal of the RFP, and is capable of refolding with it’s counter part C terminal as demonstrated by the NYMU-Taipei 2010 iGEM team through the Biomolecular Fluorescent complementation (BiFC) to give fluorescent (BBa_K411103 & BBa_K411104). We adapt this protein to be the downstream of our voltage switch because we want it to become our effector of the switch.
RFP C terminus (Protein Domain BBa_K1092106)
An RFP fragment adapted from the RFP part BBa_E1010, and its counterpart is the RFP N terminus (BBa_K1092105). It is adapted to be expressed downstream of a fusion protein such as our Voltage switch parts (BBa_K1092023 & BBa_K1092024). It is the C terminal of the RFP, and is capable of refolding with it’s counter part N terminal as demonstrated by the NYMU-Taipei 2010 iGEM team through the Biomolecular Fluorescent complementation (BiFC) to give fluorescent (BBa_K411103 & BBa_K411104). We adapt this protein to be the downstream of our voltage switch because we want it to become our effector of the switch.
Email: kingchan@cuhk.edu.hk Tel: (852)-39434420 Fax: (852)-26037246