Team:Tsinghua-E/Part1
From 2013.igem.org
Line 10: | Line 10: | ||
<div style="position:absolute;top:176px;left:56px;width:105px;height:186px;z-index:99;"> | <div style="position:absolute;top:176px;left:56px;width:105px;height:186px;z-index:99;"> | ||
<ul class="leftdh"> | <ul class="leftdh"> | ||
- | <li><a href=" | + | <li><a href="https://2013.igem.org/Team:Tsinghua-E/Part1" id="partslink">Part1</a></li> |
- | <li><a href=" | + | <li><a href="https://2013.igem.org/Team:Tsinghua-E/Part2" id="partslink">Part2</a></li> |
- | <li><a href=" | + | <li><a href="https://2013.igem.org/Team:Tsinghua-E/Part3" id="partslink">Part3</a></li> |
- | <li><a href=" | + | <li><a href="https://2013.igem.org/Team:Tsinghua-E/Part4" id="partslink">Part4</a></li> |
</ul> | </ul> | ||
</div> | </div> |
Revision as of 16:36, 22 September 2013
Part 1: THU-E Mutation Part
A plasmid used for the construction of high-diversity library in vivo ingenome level. In this vector, highly error-prone dnaQ mutant, mutD1 was cloned downstream of araBAD promoter to control the mutation rate of the target genome by the concentration of araBAD promoter’s inducer, L-arabinose, in a strict manner.E. Coli JM109 carrying different vectors of pBAD_B0030-mutD-sfGFP, pBAD_B0032-mutD-sfGFP and pBAD_SDA_RBS-mutD-sfGFP(this RBS sequence was derived from the RBS sequence upstream of sfGFP in original AraC_pBAD_CI_OR222-sfGFP vector2)were constructed. By detecting the induced fluorescence intensity, we found that pBAD_B0030-mutD-sfGFP, andpBAD_SDA_RBS-mutD- sfGFPhave relatively higher mutD expression. The increaseof mutation rate induced by our mutation part was measured by quantifying the reversion of rifampinresistance caused by mutation in genome.pBAD_SDA_RBS-mutD- sfGFPcould increase the genome mutation rate up to 10 times compared with negative control with 1g/L induction concentration of L-arabinose.
Figure.1 plasmid map for THU-E mutation part
Figure.2 rifampicin reversion mutants caused by mutD expression and the counts by agar plate
Figure.3 Conception illustration of the working mechanism of mutD
1 Schaaper, R. M. MECHANISMS OF MUTAGENESIS IN THE ESCHERICHIA-COLI MUTATOR MUTD5 - ROLE OF DNA MISMATCH REPAIR. Proc. Natl. Acad. Sci. U. S. A. 85, 8126-8130,doi:10.1073/pnas.85.21.8126 (1988).
2 Lou, C. B., Stanton, B., Chen, Y. J., Munsky, B. & Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nature Biotechnology 30, 1137-+, doi:10.1038/nbt.2401 (2012).