Team:ITB Indonesia/Project/Description
From 2013.igem.org
(Created page with "{{:Team:ITB_Indonesia/template/header}} <html> <div id="main"> <div class="content-left"> <div class="post post-single"> <h2 class="title">Please Add Title Her...") |
|||
Line 5: | Line 5: | ||
<div class="content-left"> | <div class="content-left"> | ||
<div class="post post-single"> | <div class="post post-single"> | ||
- | <h2 class="title"> | + | <h2 class="title">Project Description</h2> |
<div class="entry clearfix"> | <div class="entry clearfix"> | ||
- | <p>Aflatoxins are naturally occuring mycotoxins that are mutagenic and carcinogenic. Aflatoxin contamination of foods that are found in many developing countries may cause a serious problem for human health. ITB_Indonesia team for iGEM 2013 focuses on designing a whole cell biosensor for aflatoxin B1 detection in foods. The biosensor uses Escherichia coli as the chassis to build a genetic circuit using SOS response system to detect DNA damage caused by aflatoxin B1-oxide attack. The SOS response promoter is followed by a reporter gene coding a chromoprotein, therefore the concentration of aflatoxin B1 in food samples could be easily detected by the color change of the bacteria. For the ease of usage, we will design a syringe shaped device with our whole cell biosensor in it. This device would allow aflatoxin B1 to enter the device, but would not permit the cells to leave the device.</p> | + | <p>Aflatoxins are naturally occuring mycotoxins that are mutagenic and carcinogenic. Aflatoxin contamination of foods that are found in many developing countries may cause a serious problem for human health. ITB_Indonesia team for iGEM 2013 focuses on designing a whole cell biosensor for aflatoxin B1 detection in foods.</p> |
+ | |||
+ | <p>The biosensor uses Escherichia coli as the chassis to build a genetic circuit using SOS response system to detect DNA damage caused by aflatoxin B1-oxide attack. The SOS response promoter is followed by a reporter gene coding a chromoprotein, therefore the concentration of aflatoxin B1 in food samples could be easily detected by the color change of the bacteria.</p> | ||
+ | |||
+ | <p>For the ease of usage, we will design a syringe shaped device with our whole cell biosensor in it. This device would allow aflatoxin B1 to enter the device, but would not permit the cells to leave the device.</p> | ||
</div> | </div> | ||
</div> | </div> |
Latest revision as of 15:00, 25 September 2013
Project Description
Aflatoxins are naturally occuring mycotoxins that are mutagenic and carcinogenic. Aflatoxin contamination of foods that are found in many developing countries may cause a serious problem for human health. ITB_Indonesia team for iGEM 2013 focuses on designing a whole cell biosensor for aflatoxin B1 detection in foods.
The biosensor uses Escherichia coli as the chassis to build a genetic circuit using SOS response system to detect DNA damage caused by aflatoxin B1-oxide attack. The SOS response promoter is followed by a reporter gene coding a chromoprotein, therefore the concentration of aflatoxin B1 in food samples could be easily detected by the color change of the bacteria.
For the ease of usage, we will design a syringe shaped device with our whole cell biosensor in it. This device would allow aflatoxin B1 to enter the device, but would not permit the cells to leave the device.