Team:Tsinghua-A/Wetlab

From 2013.igem.org

(Difference between revisions)
 
(51 intermediate revisions not shown)
Line 1: Line 1:
{{:Team:Tsinghua-A/template/killbanner}}
{{:Team:Tsinghua-A/template/killbanner}}
-
 
+
{{:Team:Tsinghua-A/template/top}}
-
 
+
-
<!DOCTYPE HTML>
+
<html lang="en">
<html lang="en">
<head>
<head>
<meta charset="utf-8">
<meta charset="utf-8">
-
<title>Tsinghua-A wetlab</title>
+
<title>Tsinghua-A Wetlab</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="">
<meta name="description" content="">
<meta name="author" content="">
<meta name="author" content="">
<!-- css -->
<!-- css -->
-
<link href="http://tagsys.org/css/bootstrap-responsive.css" rel="stylesheet">
+
<link rel="stylesheet" type="text/css" href="https://2013.igem.org/Team:Tsinghua-A/css/buttonhome.css?action=raw&ctype=text/css"/>
-
<link href="http://tagsys.org/css/style.css" rel="stylesheet">
+
<link rel="stylesheet" type="text/css" href="https://2013.igem.org/Team:Tsinghua-A/css/color.css?action=raw&ctype=text/css"/>
-
<link href="button.css" rel="stylesheet">
+
<link rel="stylesheet" type="text/css" href="https://2013.igem.org/Team:Tsinghua-A/css/style.css?action=raw&ctype=text/css"/>
-
<!-- skin color -->
+
<link rel="stylesheet" type="text/css" href="https://2013.igem.org/Team:Tsinghua-A/css/bs.css?action=raw&ctype=text/css"/>
-
<link href="http://tagsys.org/color/default.css" rel="stylesheet">
+
-
 
+
-
<link rel="stylesheet" type="text/css" href="chrometheme/chromestyle4.css" />
+
-
 
+
-
<script type="text/javascript" src="chromejs/chrome.js"></script>
+
-
 
+
-
 
+
-
<!-- Include jQuery -->
+
      
      
<style type="text/css">
<style type="text/css">
Line 43: Line 33:
</style>
</style>
-
</head>
 
-
<body>
 
-
 
-
 
-
</script>
 
-
 
</head>
</head>
<body>
<body>
-
 
+
<!-- head -->
-
 
+
<section class="section green1">
-
<div class="logo">
+
-
<img src="tsinghuaa4.png" alt="" />
+
-
</div>
+
-
 
+
-
<div class="chromestyle" id="chromemenu">
+
-
<ul>
+
-
<li><a href="https://2013.igem.org/Team:Tsinghua-A">Home</a></li>
+
-
<li><a href="https://2013.igem.org/Team:Tsinghua-A/Project" rel="dropmenu1">Project</a></li>
+
-
<li><a href="https://2013.igem.org/Team:Tsinghua-A/Model" rel="dropmenu2">Model</a></li>
+
-
<li><a href="https://2013.igem.org/Team:Tsinghua-A/Wetlab" rel="dropmenu3">Wetlab</a></li>
+
-
<li><a href="https://2013.igem.org/Team:Tsinghua-A/Human Practice" rel="dropmenu4">Human Practice</a></li>
+
-
<li><a href="https://2013.igem.org/Team:Tsinghua-A/Collaboration" rel="dropmenu5">Collaboration</a></li>
+
-
<li><a href="https://2013.igem.org/Team:Tsinghua-A/Safety" rel="dropmenu6">Safety</a></li>
+
-
<li><a href="https://2013.igem.org/Team:Tsinghua-A/Team" rel="dropmenu7">Team</a></li>
+
-
 
+
-
</ul>
+
-
</div>
+
-
 
+
-
<!--1st drop down menu -->                                                  
+
-
<div id="dropmenu1" class="dropmenudiv">
+
-
<a href="">Background</a>
+
-
<a href="">Meaning</a>
+
-
<a href="">Design</a>
+
-
<a href="">Results and Application</a>
+
-
</div>
+
-
 
+
-
 
+
-
<!--2nd drop down menu -->                                               
+
-
<div id="dropmenu2" class="dropmenudiv" >
+
-
<a href="">ODE Equations</a>
+
-
<a href="">Basic Function Analysis</a>
+
-
<a href="">Adaptation to Copy Number</a>
+
-
<a href="">Optimal Testing and Further Analysis</a>
+
-
<a href="">Instability, Oscillation and Noise</a>
+
-
 
+
-
</div>
+
-
 
+
-
<!--3rd drop down menu -->                                                 
+
-
<div id="dropmenu3" class="dropmenudiv" >
+
-
<a href="">Overview</a>
+
-
<a href="">Construction</a>
+
-
<a href="">Supplementary text</a>
+
-
<a href="">experimental characterization</a>
+
-
<a href="">Parts submission</a>
+
-
</div>
+
-
 
+
-
<div id="dropmenu4" class="dropmenudiv" >
+
-
 
+
-
</div>
+
-
 
+
-
<div id="dropmenu5" class="dropmenudiv" >
+
-
 
+
-
</div>
+
-
 
+
-
<div id="dropmenu6" class="dropmenudiv" >
+
-
 
+
-
</div>
+
-
 
+
-
<div id="dropmenu7" class="dropmenudiv" >
+
-
<a href="">Instructors</a>
+
-
<a href="">Members</a>
+
-
<a href="">Attributions</a>
+
-
<a href="">Gallery</a>
+
-
</div>
+
-
 
+
-
<script type="text/javascript">
+
-
 
+
-
cssdropdown.startchrome("chromemenu")
+
-
 
+
-
</script>
+
-
 
+
-
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
<section class="spacer green">
+
<div class="container">
<div class="container">
<div class="row">
<div class="row">
-
 
-
 
<ul class="ch-grid">
<ul class="ch-grid">
Line 141: Line 45:
         <div class="ch-item ch-img-1">
         <div class="ch-item ch-img-1">
             <div class="ch-info">
             <div class="ch-info">
-
                 <h3><a href="#about">Overview</a></h3>
+
                 <h3><a href="#Overview">Overview</a></h3>
                  
                  
             </div>
             </div>
Line 149: Line 53:
         <div class="ch-item ch-img-2">
         <div class="ch-item ch-img-2">
             <div class="ch-info">
             <div class="ch-info">
-
                 <h3><a href="#life">Construction</a></h3>
+
                 <h3><a href="#Construction">Construction</a></h3>
                  
                  
             </div>
             </div>
Line 157: Line 61:
         <div class="ch-item ch-img-3">
         <div class="ch-item ch-img-3">
             <div class="ch-info">
             <div class="ch-info">
-
                 <h3><a href="#projects">Supplementary text</a></h3>
+
                 <h3><a href="#parts">Parts</a></h3>
                  
                  
             </div>
             </div>
Line 164: Line 68:
<li>
<li>
-
         <div class="ch-item ch-img-3">
+
         <div class="ch-item ch-img-4">
             <div class="ch-info">
             <div class="ch-info">
-
                 <h3><a href="#publications">Experimental Characterization</a></h3>
+
                 <h3><a href="#Experimental Characterization">Experimental Characterization</a></h3>
                  
                  
             </div>
             </div>
Line 173: Line 77:
<li>
<li>
-
         <div class="ch-item ch-img-3">
+
         <div class="ch-item ch-img-5">
             <div class="ch-info">
             <div class="ch-info">
-
                 <h3><a href="#contact">Discussion</a></h3>
+
                 <h3><a href="#Discussion">Discussion</a></h3>
                  
                  
             </div>
             </div>
Line 185: Line 89:
</div>
</div>
</section>
</section>
-
<!-- end spacer section -->
+
<!-- overview -->
-
<!-- section: team -->
+
 
-
<section id="about" class="section">
+
<section id="Overview" class="section green2">
 +
 
<div class="container">
<div class="container">
-
<h4>Overview </h4>
+
<h4>Overview</h4>
<div class="row">
<div class="row">
<div class="span6 offset1">
<div class="span6 offset1">
<div>
<div>
-
 
<p style="text-align:justify">
<p style="text-align:justify">
Based on modeling work, we find that negative feedback can contribute to the network’s adaptation to DNA copy number variation. So we analysed the following three-node networks, A and B. The difference between A and B is the output nodes of network A has negative feedback.
Based on modeling work, we find that negative feedback can contribute to the network’s adaptation to DNA copy number variation. So we analysed the following three-node networks, A and B. The difference between A and B is the output nodes of network A has negative feedback.
Line 203: Line 107:
<div class="span4">
<div class="span4">
<div class="aligncenter">
<div class="aligncenter">
-
<img src="https://static.igem.org/mediawiki/2013/6/65/Extu1.png" alt="" />
+
<img src="https://static.igem.org/mediawiki/2013/1/17/Extu01.PNG" alt="" />
-
<img src="https://static.igem.org/mediawiki/2013/3/31/Extu2.png" alt="" />
+
</div>
</div>
</div>
</div>
Line 215: Line 118:
<!-- section: life -->
<!-- section: life -->
-
<section id="life" class="section blue">
+
<section id="Construction" class="section green3">
<div class="container">
<div class="container">
<h4>Construction </h4>
<h4>Construction </h4>
Line 224: Line 127:
We constructed the following circuit A ,B and C .The circuit A corresponds to the network A ,while the circuit B is the implementation of network B. Circuit C is used as a control design to testify the function of A and B.
We constructed the following circuit A ,B and C .The circuit A corresponds to the network A ,while the circuit B is the implementation of network B. Circuit C is used as a control design to testify the function of A and B.
</br>
</br>
-
</br>
 
-
 
In circuit A, as we can see, the input is miR-21, which can repress the plasmid pz371 and K1116002(The plasmid’s information can be found in parts). K1116002 induced by rtTA and Dox, serves as an auxiliary node, producing the LacI gene to inhibit the expression of EYFP. EYFP(Enhance Yellow Fluorescent Protein )is used as output. Besides, the miR-FF3 restrains the expression of LacI. The reason that we get the most of post-transcriptional control can be seen in Supplementary text.
In circuit A, as we can see, the input is miR-21, which can repress the plasmid pz371 and K1116002(The plasmid’s information can be found in parts). K1116002 induced by rtTA and Dox, serves as an auxiliary node, producing the LacI gene to inhibit the expression of EYFP. EYFP(Enhance Yellow Fluorescent Protein )is used as output. Besides, the miR-FF3 restrains the expression of LacI. The reason that we get the most of post-transcriptional control can be seen in Supplementary text.
</br>
</br>
-
</br>
 
-
 
                 In circuit B, however, the plasmid K1116003 does not have FF3 target, leading to the contrast between circuit A and B. We can see miR-21 can’t target at pZ349 and pZ331 in circuit C , that is, there is no input in circuit C. The miR-21, used to distinguish cancer cell from normal cells ,is endogenous in Hela cell.  
                 In circuit B, however, the plasmid K1116003 does not have FF3 target, leading to the contrast between circuit A and B. We can see miR-21 can’t target at pZ349 and pZ331 in circuit C , that is, there is no input in circuit C. The miR-21, used to distinguish cancer cell from normal cells ,is endogenous in Hela cell.  
                 </br>
                 </br>
-
<img src="https://static.igem.org/mediawiki/2013/b/bd/Extu5.png" alt="" />
+
</br>
 +
<b>Supplementary text</b>
 +
</br>
 +
<p style="font-size:80%"/>
 +
miRNAs function as posttranscriptional regulators which have distinguished features compared to transcriptional regulators, intervening late in gene expression process, with the capability to counteract variation from the upstream processes (Margaret et al., 2012). Research shows that while conducting experiment on an incoherent feedforward motif in mammalian cells, posttranscriptional regulation results in superior adaptation behavior, higher absolute expression levels and lower intrinsic fluctuations (Bleris et al., 2011). miRNAs can serve as buffers against variation during gene expression; transient increases in transcription factor activity would propagate to increases in target miRNA transcription while would be counteracted by increased miRNA and vice versa. Therefore, under the miRNA posttranscriptional regulation, protein output can be uncoupled from fluctuations in transcription factor concentration or activity (Margaret et al., 2012). miRNAs also possess good stability which, consistent with theoretical constraints, meets the need for enough molecules of a regulator to achieve a small reduction in the noise of a target gene (Lestas et al., 2010).
 +
</p>
</p>
</p>
</div>
</div>
Line 238: Line 142:
<div class="span4">
<div class="span4">
<div class="aligncenter">
<div class="aligncenter">
-
<img src="https://static.igem.org/mediawiki/2013/4/41/Extu3.png" alt="" />
+
<img src="https://static.igem.org/mediawiki/2013/c/cc/Extu03.PNG" alt="" style="width:560px"/>
-
</br>
+
                                </br></br></br></br></br>
-
</br>
+
<img src="https://static.igem.org/mediawiki/2013/6/6d/Extu04.PNG" alt="" style="width:560px"/>
-
</br>
+
                                </br></br></br></br></br>
-
</br>
+
<img src="https://static.igem.org/mediawiki/2013/e/e4/Extu05.PNG" alt="" style="width:560px"/>
-
</br>
+
-
</br>
+
-
</br>
+
-
<img src="https://static.igem.org/mediawiki/2013/e/eb/Extu4.png" alt="" />
+
-
+
</div>
</div>
-
            <div>
 
-
 
-
</div>
 
-
 
</div>
</div>
</div>
</div>
</div>
</div>
 +
</section>
-
 
-
<!-- end section: life -->
 
-
 
-
<!-- section: projects -->
 
-
<section id="projects" class="section wood">
 
-
<div class="container">
 
-
<h4>Supplementary text </h4>
 
-
<!-- Three columns -->
 
-
<div class="row">
 
-
<div class="span6">
 
-
<div class="home-post">
 
-
 
-
<div class="entry-content">
 
-
 
-
<p style="text-align:justify">
 
-
miRNAs function as posttranscriptional regulators which have distinguished features compared to transcriptional regulators, intervening late in gene expression process, with the capability to counteract variation from the upstream processes (Margaret et al., 2012).
 
-
</p>
 
-
<!-- <a href="#" class="more">Read more</a> -->
 
-
</div>
 
-
</div>
 
-
</div>
 
-
<div class="span6">
 
-
<div class="home-post">
 
-
 
-
<div class="entry-content">
 
-
 
-
<p style="text-align:justify">
 
-
Research shows that while conducting experiment on an incoherent feedforward motif in mammalian cells, posttranscriptional regulation results in superior adaptation behavior, higher absolute expression levels and lower intrinsic fluctuations (Bleris et al., 2011).
 
-
</p>
 
-
<!-- <a href="#" class="more">Read more</a> -->
 
-
</div>
 
-
</div>
 
-
</div>
 
-
</div>
 
-
<div class="row">
 
-
<div class="span6">
 
-
<div class="home-post">
 
-
 
-
<div class="entry-content">
 
-
 
-
<p style="text-align:justify">
 
-
miRNAs can serve as buffers against variation during gene expression; transient increases in transcription factor activity would propagate to increases in target miRNA transcription while would be counteracted by increased miRNA and vice versa. Therefore, under the miRNA posttranscriptional regulation, protein output can be uncoupled from fluctuations in transcription factor concentration or activity (Margaret et al., 2012).
 
-
</p>
 
-
<!-- <a href="#" class="more">Read more</a> -->
 
-
</div>
 
-
</div>
 
-
</div>
 
-
<div class="span6">
 
-
<div class="home-post">
 
-
 
-
<div class="entry-content">
 
-
 
-
<p style="text-align:justify">
 
-
miRNAs also possess good stability which, consistent with theoretical constraints, meets the need for enough molecules of a regulator to achieve a small reduction in the noise of a target gene (Lestas et al., 2010).
 
-
</p>
 
-
<!-- <a href="#" class="more">Read more</a> -->
 
-
</div>
 
-
</div>
 
-
</div>
 
-
</div>
 
-
</div>
 
-
</section>
 
<!-- end section: projects -->
<!-- end section: projects -->
-
<section id="Experimental Characterization" class="section">
+
<section id="Experimental Characterization" class="section green4">
<div class="container">
<div class="container">
<h4>Experimental Characterization</h4>
<h4>Experimental Characterization</h4>
Line 330: Line 164:
<p >
<p >
  We took advantage of another fluorescent protein(mkate ) as reference gene, which has no influence in our design. Published literature generally supports the view that in transient transfections, fluorescence depends linearly on the copy number of transfected plasmids (Tseng et al, 1997; Pollard et al, 1998;Cohenet al,2009; Schwakeet al, 2010). While strictly speaking, this reporter level also depends on many other potentially fluctuating parameters such as global synthesis and degradation rates(Leonidas Bleris et al,2011),it is more legitimately use the normalized quotient to instead of the value of EYFP.
  We took advantage of another fluorescent protein(mkate ) as reference gene, which has no influence in our design. Published literature generally supports the view that in transient transfections, fluorescence depends linearly on the copy number of transfected plasmids (Tseng et al, 1997; Pollard et al, 1998;Cohenet al,2009; Schwakeet al, 2010). While strictly speaking, this reporter level also depends on many other potentially fluctuating parameters such as global synthesis and degradation rates(Leonidas Bleris et al,2011),it is more legitimately use the normalized quotient to instead of the value of EYFP.
-
                   </br>
+
                   </br></br>
-
                  </br>
+
  <img src="https://static.igem.org/mediawiki/2013/0/0d/Extu06.PNG" alt="" style="margin:auto;display:block;text-align:center"/>
-
  <img src="https://static.igem.org/mediawiki/2013/8/87/Extu6.jpg" alt="" style="text-align:center"/>
+
-
  </br>
+
  </br>
  </br>
  Apparently, the output of circuit C is lower than circuit B .Having the negative feedback compared with circuit B, the expression of EYFP in circuit A is strongest.  
  Apparently, the output of circuit C is lower than circuit B .Having the negative feedback compared with circuit B, the expression of EYFP in circuit A is strongest.  
Line 339: Line 171:
  </br>
  </br>
                   Then we analysed the output of constructed designs varies with the DNA copy number. Facing with the difficulty of counting the copy number directly, we employed the reference gene to reflect .We think the copy number is high when the expression intensity of mkate is strong. One hundred thousand positive Hela cells was collected to obtain the relationship between EYFP and make.
                   Then we analysed the output of constructed designs varies with the DNA copy number. Facing with the difficulty of counting the copy number directly, we employed the reference gene to reflect .We think the copy number is high when the expression intensity of mkate is strong. One hundred thousand positive Hela cells was collected to obtain the relationship between EYFP and make.
-
  </br>
+
  </br></br>
-
  </br>  
+
      <img src="https://static.igem.org/mediawiki/2013/8/86/Extu7.PNG" alt="" style="margin:auto;display:block;text-align:center"/>
-
      <img src="https://static.igem.org/mediawiki/2013/e/e1/Extu7.jpg" alt="" style="text-align:center"/>
+
-
  </br>
+
  </br>
  </br>
  From the figure 2, we learned with the increase of the expression intensity of makte, the specific valve of EYFP and mkate decreases. In another word, the circuit A’s output reaches saturation fast with the increase of copy number. We came to a conclusion circuit A’s adaptation to DNA copy number is higher than circuit B’s. So, the negative feedback works.
  From the figure 2, we learned with the increase of the expression intensity of makte, the specific valve of EYFP and mkate decreases. In another word, the circuit A’s output reaches saturation fast with the increase of copy number. We came to a conclusion circuit A’s adaptation to DNA copy number is higher than circuit B’s. So, the negative feedback works.
Line 348: Line 178:
</p>
</p>
</div>
</div>
-
</div>
 
-
 
-
</div>
 
</div>
</div>
</section>
</section>
<!-- section: publications -->
<!-- section: publications -->
-
<section id="publications" class="section wood">
+
 
 +
<section id="parts" class="section green5">
<div class="container">
<div class="container">
-
+
<h4>Parts</h4>
-
<!-- portfolio filter -->
+
<div class="row">
<div class="row">
-
<div id="filters2" class="span12">
+
-
+
-
</div>
+
-
</div>
+
-
<!-- END PORTFOLIO FILTERING -->
+
-
<div class="row">
+
-
<div class="span12">
+
-
<div id="portfolio-wrap">
+
-
+
-
<table >
+
-
<thead>
+
-
<tr>
+
-
+
-
+
-
<td >Name</td>
+
-
<td style="background:orange; text-align:center; line-height:200%; font-size:20px">description</td>
+
-
<td style="background:orange; text-align:center; line-height:200%; font-size:20px">Part Type</td>
+
-
<td style="background:orange; text-align:center; line-height:200%; font-size:20px">Designer</td>
+
-
</tr>
+
-
</thead>
+
-
<tbody>
+
-
+
-
+
-
<tr >
+
-
<td><li>Lan Zhang, <strong>Xuan Ding,</strong> Zhiguo Wan, Ming Gu, Xiangyang Li, “WiFace: A secure geosocial networking system using WiFi-based multi-hop MANET,” in Proceedings of the 1st ACM Workshop on Mobile Cloud Computing and Services: Social Networks and Beyond (MCS 2010), pp. 1-8.</li></td>
+
-
</tr>
+
-
<tr>
+
-
<td><li>Wei Wang, <strong>Xuan Ding,</strong> Chunping Li, Hui Wang, “A novel evaluation method for defect prediction in software systems,” in Proceedings of the International Conference on Computational Intelligence and Software Engineering (CiSE 2010), pp. 1-5.</li></td>
+
-
</tr>
+
-
<tr >
+
-
<td><li><strong>Lei Yang,</strong> Jinsong Han etal, "Identification-Free Batch Authentication for RFID Tags", in Proceeding of IEEE ICNP, 2010.</li></td>
+
-
</tr>
+
-
<tr >
+
-
<td><li><strong>Lei Yang,</strong> Jinsong Han, "Utilizing RF Interference to Enable Private Estimation in RFID Systems", in Proceeding of IEEE ICPADS, 2010.</li></td>
+
-
</tr>
+
-
<tr >
+
-
<td><li><strong>Lei Yang,</strong> Jinsong Han, "Revisiting Tag Collision Problem in RFID Systems", in Proceedings of IEEE ICPP, 2010.</li></td>
+
-
</tr>
+
-
</tbody>
+
-
+
-
</tbody>
+
-
</table>
+
-
+
-
</div>
+
-
</div>
+
</div>
</div>
</div>
</div>
Line 411: Line 194:
<!-- section: contact -->
<!-- section: contact -->
-
<section id="contact" class="section green">
+
<section id="Discussion" class="section green6">
<div class="container">
<div class="container">
<h4>Discussion</h4>
<h4>Discussion</h4>
<p>
<p>
Due to some restrictions in wetlab, we only finished the above-mentioned experiment. We found that the number of Hela cells who possesses high copy number is  comparatively low. We also noticed the circuit C’s output is higher than expected in Figure 1.This may cause wrong judge when use the design to detect miR-21. Some measures will be taken to solve this question.
Due to some restrictions in wetlab, we only finished the above-mentioned experiment. We found that the number of Hela cells who possesses high copy number is  comparatively low. We also noticed the circuit C’s output is higher than expected in Figure 1.This may cause wrong judge when use the design to detect miR-21. Some measures will be taken to solve this question.
-
 
+
</br>
         Besides, we are going to endeavor to construct the other networks mentioned in modeling work.
         Besides, we are going to endeavor to construct the other networks mentioned in modeling work.
-
<br>
+
</br></br></br></br></br></br></br></br></br></br></br></br></br>
</p>
</p>
</div>
</div>
</section>
</section>
 +
 +
<footer>
<footer>
<div class="container">
<div class="container">
Line 438: Line 223:
<!-- ./container -->
<!-- ./container -->
</footer>
</footer>
 +
<a href="#" class="scrollup"><i class="icon-angle-up icon-square icon-bgdark icon-2x"></i></a>
 +
<!-- jQuery -->
 +
 +
<!-- nav -->
<a href="#" class="scrollup"><i class="icon-angle-up icon-square icon-bgdark icon-2x"></i></a>
<a href="#" class="scrollup"><i class="icon-angle-up icon-square icon-bgdark icon-2x"></i></a>
<!-- jQuery -->
<!-- jQuery -->
<script src="http://tagsys.org/js/jquery.js"></script>
<script src="http://tagsys.org/js/jquery.js"></script>
<!-- nav -->
<!-- nav -->
-
<script src="http://tagsys.org/js/jquery.scrollTo.js"></script>
+
<script src="https://2013.igem.org/Team:Tsinghua-A/js/scroll.js?action=raw&ctype=text/javascript"></script>
<script src="http://tagsys.org/js/jquery.nav.js"></script>
<script src="http://tagsys.org/js/jquery.nav.js"></script>
<!-- localScroll -->
<!-- localScroll -->

Latest revision as of 17:18, 27 September 2013

Tsinghua-A Wetlab

Overview

Based on modeling work, we find that negative feedback can contribute to the network’s adaptation to DNA copy number variation. So we analysed the following three-node networks, A and B. The difference between A and B is the output nodes of network A has negative feedback.
We transfected this two circuits into mammalian cells (Hela cell). By testing the mean value of EYFP (Enhance Yellow Fluorescent Protein, the output of our circuits), and the relationship between the EYFP and the DNA copy number, we can prove the hypothesis.

Construction

We constructed the following circuit A ,B and C .The circuit A corresponds to the network A ,while the circuit B is the implementation of network B. Circuit C is used as a control design to testify the function of A and B.
In circuit A, as we can see, the input is miR-21, which can repress the plasmid pz371 and K1116002(The plasmid’s information can be found in parts). K1116002 induced by rtTA and Dox, serves as an auxiliary node, producing the LacI gene to inhibit the expression of EYFP. EYFP(Enhance Yellow Fluorescent Protein )is used as output. Besides, the miR-FF3 restrains the expression of LacI. The reason that we get the most of post-transcriptional control can be seen in Supplementary text.
In circuit B, however, the plasmid K1116003 does not have FF3 target, leading to the contrast between circuit A and B. We can see miR-21 can’t target at pZ349 and pZ331 in circuit C , that is, there is no input in circuit C. The miR-21, used to distinguish cancer cell from normal cells ,is endogenous in Hela cell.

Supplementary text

miRNAs function as posttranscriptional regulators which have distinguished features compared to transcriptional regulators, intervening late in gene expression process, with the capability to counteract variation from the upstream processes (Margaret et al., 2012). Research shows that while conducting experiment on an incoherent feedforward motif in mammalian cells, posttranscriptional regulation results in superior adaptation behavior, higher absolute expression levels and lower intrinsic fluctuations (Bleris et al., 2011). miRNAs can serve as buffers against variation during gene expression; transient increases in transcription factor activity would propagate to increases in target miRNA transcription while would be counteracted by increased miRNA and vice versa. Therefore, under the miRNA posttranscriptional regulation, protein output can be uncoupled from fluctuations in transcription factor concentration or activity (Margaret et al., 2012). miRNAs also possess good stability which, consistent with theoretical constraints, meets the need for enough molecules of a regulator to achieve a small reduction in the noise of a target gene (Lestas et al., 2010).











Experimental Characterization

We took advantage of another fluorescent protein(mkate ) as reference gene, which has no influence in our design. Published literature generally supports the view that in transient transfections, fluorescence depends linearly on the copy number of transfected plasmids (Tseng et al, 1997; Pollard et al, 1998;Cohenet al,2009; Schwakeet al, 2010). While strictly speaking, this reporter level also depends on many other potentially fluctuating parameters such as global synthesis and degradation rates(Leonidas Bleris et al,2011),it is more legitimately use the normalized quotient to instead of the value of EYFP.


Apparently, the output of circuit C is lower than circuit B .Having the negative feedback compared with circuit B, the expression of EYFP in circuit A is strongest.

Then we analysed the output of constructed designs varies with the DNA copy number. Facing with the difficulty of counting the copy number directly, we employed the reference gene to reflect .We think the copy number is high when the expression intensity of mkate is strong. One hundred thousand positive Hela cells was collected to obtain the relationship between EYFP and make.


From the figure 2, we learned with the increase of the expression intensity of makte, the specific valve of EYFP and mkate decreases. In another word, the circuit A’s output reaches saturation fast with the increase of copy number. We came to a conclusion circuit A’s adaptation to DNA copy number is higher than circuit B’s. So, the negative feedback works.

Parts

Discussion

Due to some restrictions in wetlab, we only finished the above-mentioned experiment. We found that the number of Hela cells who possesses high copy number is comparatively low. We also noticed the circuit C’s output is higher than expected in Figure 1.This may cause wrong judge when use the design to detect miR-21. Some measures will be taken to solve this question.
Besides, we are going to endeavor to construct the other networks mentioned in modeling work.