Team:Tsinghua-E/Part1

From 2013.igem.org

(Difference between revisions)
 
(27 intermediate revisions not shown)
Line 2: Line 2:
<html xmlns="http://www.w3.org/1999/xhtml">
<html xmlns="http://www.w3.org/1999/xhtml">
<style type="text/css">
<style type="text/css">
-
#content{height:1760px;}
+
#content{height:1800px;}
-
p{font-size:120%}
+
p{font-size:130%}
.memberx {position:absolute;top:60px;left:5px;height:215px;width;300px;}
.memberx {position:absolute;top:60px;left:5px;height:215px;width;300px;}
.memberx span{z-index:50;position:relative;width:453px;display:block;top:-215px;left:305px;color:#000000}
.memberx span{z-index:50;position:relative;width:453px;display:block;top:-215px;left:305px;color:#000000}
Line 10: Line 10:
<div style="position:absolute;top:176px;left:56px;width:105px;height:186px;z-index:99;">
<div style="position:absolute;top:176px;left:56px;width:105px;height:186px;z-index:99;">
   <ul class="leftdh">
   <ul class="leftdh">
-
<li><a href="#" id="partslink">Part1</a></li>
+
<li><a href="https://2013.igem.org/Team:Tsinghua-E/Part1" id="partslink">Part1</a></li>
-
         <li><a href="#" id="partslink">Part2</a></li>
+
         <li><a href="https://2013.igem.org/Team:Tsinghua-E/Part2" id="partslink">Part2</a></li>
-
         <li><a href="#" id="partslink">Part3</a></li>
+
         <li><a href="https://2013.igem.org/Team:Tsinghua-E/Part3" id="partslink">Part3</a></li>
-
         <li><a href="#" id="partslink">Part4</a></li>
+
         <li><a href="https://2013.igem.org/Team:Tsinghua-E/Part4" id="partslink">Part4</a></li>
   </ul>
   </ul>
</div>
</div>
-
<div class="tmc" style="height:1645px;">
+
<div class="tmc" style="height:1685px;">
</div>
</div>
-
<div class="neirong" style="height:1625px;">
+
<div class="neirong" style="height:1665px;">
-
<h3>Part 1: THU-E Mutation Part</h3> <br />
+
 
-
<p> A plasmid  used for the construction of high-diversity library in vivo ingenome level. In  this vector, highly error-prone <em>dnaQ</em> mutant, <em>mutD</em><a href="#_ENREF_1" title="Lou, 2012 #499">1</a> was cloned downstream  of <em>araBAD</em> promoter to control the  mutation rate of the target genome by the concentration of <em>araBAD</em> promoter’s inducer, L-arabinose, in a strict manner.<em>E. Coli</em> JM109 carrying different vectors  of pBAD_B0030-<em>mutD</em>-<em>sfGFP</em>, pBAD_B0032-<em>mutD</em>-<em>sfGFP</em> and pBAD_SDA_RBS-<em>mutD-sfGFP</em>(this RBS sequence was derived  from the RBS sequence upstream of sfGFP in original AraC_pBAD_CI_OR222-sfGFP  vector<a href="#_ENREF_2" title="Lou, 2012 #499">2</a>)were  constructed. By detecting the induced fluorescence intensity, we found that pBAD_B0030-<em>mutD</em>-<em>sfGFP</em>,  andpBAD_SDA_RBS-<em>mutD- sfGFP</em>have  relatively higher <em>mutD</em> expression. The increaseof mutation rate induced  by our mutation part was measured by quantifying the reversion of rifampinresistance  caused by mutation in genome.pBAD_SDA_RBS-<em>mutD-  sfGFP</em>could increase the genome mutation rate up to 10 times compared with  negative control with 1g/L induction concentration of L-arabinose. <br />
+
</html>
-
+
 
 +
<h2>[[File:4_1s.png‎|68px|left]] '''Part 1: THU-E Mutation Part''' </h2>
 +
[[File:Plasmid1.png|446px|right]]
 +
 
 +
A plasmid  used for the construction of high-diversity library in vivo ingenome level. In  this vector, highly error-prone <em>dnaQ</em> mutant, <em>mutD</em><html><a href="#_ENREF_1" title="Lou, 2012 #499">[1]</a></html>was cloned downstream  of <em>araBAD</em> promoter to control the  mutation rate of the target genome by the concentration of <em>araBAD</em> promoter’s inducer, L-arabinose, in a strict manner.<em>E. Coli</em> JM109 carrying different vectors  of pBAD_B0030-<em>mutD</em>-<em>sfGFP</em>, pBAD_B0032-<em>mutD</em>-<em>sfGFP</em> and pBAD_SDA_RBS-<em>mutD-sfGFP</em>(this RBS sequence was derived  from the RBS sequence upstream of sfGFP in original AraC_pBAD_CI_OR222-sfGFP  vector<html><a href="#_ENREF_2" title="Lou, 2012 #499">[2]</a></html>)were  constructed. By detecting the induced fluorescence intensity, we found that pBAD_B0030-<em>mutD</em>-<em>sfGFP</em>,  andpBAD_SDA_RBS-<em>mutD- sfGFP</em>have  relatively higher <em>mutD</em> expression. The increaseof mutation rate induced  by our mutation part was measured by quantifying the reversion of rifampinresistance  caused by mutation in genome.pBAD_SDA_RBS-<em>mutD-  sfGFP</em>could increase the genome mutation rate up to 10 times compared with  negative control with 1g/L induction concentration of L-arabinose. <br />
 +
 
 +
<html>
<p align="center"><br />
<p align="center"><br />
-
   <img border="0" width="446" height="308" src="/wiki/images/f/f1/Mut.jpg" /><br />
+
   <img border="0" width="446" src="/wiki/images/a/a3/Part1II.png" /> <br />
-
   Figure.1 plasmid map for THU-E mutation part<br />
+
   Figure.1 Conception illustration of the working mechanism of <em>mutD</em>
-
   <img border="0" width="402" height="366" src="/wiki/images/7/70/Part1I.png" /> <br />
+
   <img border="0" width="446" src="/wiki/images/7/70/Part1I.png" /> <br />
   Figure.2 rifampicin  reversion mutants caused by <em>mutD</em> expression and the counts by agar plate<br />
   Figure.2 rifampicin  reversion mutants caused by <em>mutD</em> expression and the counts by agar plate<br />
-
  <img border="0" width="413" height="255" src="/wiki/images/a/a3/Part1II.png" /> <br />
+
</p>
-
  Figure.3 Conception  illustration of the working mechanism of <em>mutD</em></p>
+
<br/>
-
 
+
<br/>
-
<strong>1 Schaaper, R. M. MECHANISMS OF MUTAGENESIS IN THE ESCHERICHIA-COLI  MUTATOR MUTD5 - ROLE OF DNA MISMATCH REPAIR. <em>Proc. Natl. Acad. Sci. U. S. A.</em> 85, 8126-8130,doi:10.1073/pnas.85.21.8126  (1988).</strong><br />
+
<p><font style="font-size: 12px">[1] Schaaper, R. M. Mechanisms of mutagenesis in the Escherichia-Coli mutator mutd5 - role of DNA mismatch repair. <em>Proc. Natl. Acad. Sci. U. S. A.</em> 85, 8126-8130,doi:10.1073/pnas.85.21.8126  (1988).</font></p>
-
  <strong>2 Lou, C. B., Stanton, B., Chen, Y. J., Munsky, B. &amp;  Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from  genetic context. <em>Nature Biotechnology</em> 30, 1137-+, doi:10.1038/nbt.2401 (2012).</strong><strong> </strong></p>
+
<p><font style="font-size: 12px">[2] Lou, C. B., Stanton, B., Chen, Y. J., Munsky, B. &amp;  Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from  genetic context. <em>Nature Biotechnology</em> 30, 1137-+, doi:10.1038/nbt.2401 (2012).</font></p>
</div>
</div>
</html>
</html>

Latest revision as of 03:07, 28 September 2013

  • Totop

















4 1s.png
Part 1: THU-E Mutation Part

Plasmid1.png

A plasmid used for the construction of high-diversity library in vivo ingenome level. In this vector, highly error-prone dnaQ mutant, mutD[1]was cloned downstream of araBAD promoter to control the mutation rate of the target genome by the concentration of araBAD promoter’s inducer, L-arabinose, in a strict manner.E. Coli JM109 carrying different vectors of pBAD_B0030-mutD-sfGFP, pBAD_B0032-mutD-sfGFP and pBAD_SDA_RBS-mutD-sfGFP(this RBS sequence was derived from the RBS sequence upstream of sfGFP in original AraC_pBAD_CI_OR222-sfGFP vector[2])were constructed. By detecting the induced fluorescence intensity, we found that pBAD_B0030-mutD-sfGFP, andpBAD_SDA_RBS-mutD- sfGFPhave relatively higher mutD expression. The increaseof mutation rate induced by our mutation part was measured by quantifying the reversion of rifampinresistance caused by mutation in genome.pBAD_SDA_RBS-mutD- sfGFPcould increase the genome mutation rate up to 10 times compared with negative control with 1g/L induction concentration of L-arabinose.



Figure.1 Conception illustration of the working mechanism of mutD
Figure.2 rifampicin reversion mutants caused by mutD expression and the counts by agar plate



[1] Schaaper, R. M. Mechanisms of mutagenesis in the Escherichia-Coli mutator mutd5 - role of DNA mismatch repair. Proc. Natl. Acad. Sci. U. S. A. 85, 8126-8130,doi:10.1073/pnas.85.21.8126 (1988).

[2] Lou, C. B., Stanton, B., Chen, Y. J., Munsky, B. & Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nature Biotechnology 30, 1137-+, doi:10.1038/nbt.2401 (2012).