Team:HUST-China/Modelling/Stability
From 2013.igem.org
(Difference between revisions)
HUST LiChen (Talk | contribs) |
|||
(5 intermediate revisions not shown) | |||
Line 68: | Line 68: | ||
<ul class="nav nav-list bs-docs-sidenav"> | <ul class="nav nav-list bs-docs-sidenav"> | ||
<!------------------------------------------Left side navigator start----------------------------------------------------> | <!------------------------------------------Left side navigator start----------------------------------------------------> | ||
- | + | <li><a href="https://2013.igem.org/Team:HUST-China/Modelling">Overview</a></li> | |
- | + | <li><a href="https://2013.igem.org/Team:HUST-China/Modelling/DDE_Model"></i>Delay Difference Equations</a></li> | |
- | + | <li><a href="https://2013.igem.org/Team:HUST-China/Modelling/Parameter_Range_and_Sensitivity_Analysis"></i>Parameter Range and Sensitivity Analysis</a></li> | |
+ | <li class="active"><a href="javascript:void;"></i>Stability</a></li> | ||
+ | <li><a href="https://2013.igem.org/Team:HUST-China/Modelling/MCOS"></i>Multi Cells Oscillation Simulation</a></li> | ||
<!------------------------------------------Left side navigator end----------------------------------------------------> | <!------------------------------------------Left side navigator end----------------------------------------------------> | ||
</ul> | </ul> | ||
Line 78: | Line 80: | ||
<!----------------------------------------------Main content start------------------------------------------------------> | <!----------------------------------------------Main content start------------------------------------------------------> | ||
<div id="Part-2"> | <div id="Part-2"> | ||
- | <h1><strong> | + | <h1><strong>Stability of DDEs</strong></h1> |
</div> | </div> | ||
<h2><strong>Goal</strong></h2> | <h2><strong>Goal</strong></h2> | ||
- | To analyze whether it is stable against environment | + | To analyze whether it is stable against environment changes. |
<h2><strong>Results</strong></h2> | <h2><strong>Results</strong></h2> | ||
- | Basing on the equations, since applying their Taylor series makes the equations formed in a linear one keeping the topology of the solution to the original equations, the | + | Basing on the equations, since applying their Taylor series makes the equations formed in a linear one keeping the topology of the solution to the original equations, the characteristic equations can be presented: |
$$E(\mu) = \left(\mu+\lambda\frac{\gamma}{(Ce+a)^2}\right)(\mu+d_{a/r})\left(\mu+k_{fa}+\lambda\frac{\gamma}{(Ce+a_{uf})^2}\right)-k_{fa}T_acopy_a(k_3E_1+k_4E_2+k_5E_3) = 0$$ | $$E(\mu) = \left(\mu+\lambda\frac{\gamma}{(Ce+a)^2}\right)(\mu+d_{a/r})\left(\mu+k_{fa}+\lambda\frac{\gamma}{(Ce+a_{uf})^2}\right)-k_{fa}T_acopy_a(k_3E_1+k_4E_2+k_5E_3) = 0$$ | ||
Line 114: | Line 116: | ||
Thus the existence of periodical solution is equal to: | Thus the existence of periodical solution is equal to: | ||
$$x^3+(c_1^2+c_2^2+c_3^2)x^2+(c_1^2c_2^2+c_2^2c_3^2+c_1^2c_3^2)x+c_1^2c_2^2c_3^2 = (k_{fa}T_acopy_a)^2\left(\dfrac{\left(\frac{2a}{a_0}\right)^2\left(k_3^2+k_5^2\right)}{\left(1+\frac{r^4}{r_0}+\frac{a^2}{a_0}\right)^4}+\dfrac{\left(\frac{2ar^2}{r_0}\right)^2\left(r^4k_3^2+k_4^2\right)}{\left(1+\frac{r^4}{r_0}+\frac{a^2}{a_0}\right)^4}\right)$$ | $$x^3+(c_1^2+c_2^2+c_3^2)x^2+(c_1^2c_2^2+c_2^2c_3^2+c_1^2c_3^2)x+c_1^2c_2^2c_3^2 = (k_{fa}T_acopy_a)^2\left(\dfrac{\left(\frac{2a}{a_0}\right)^2\left(k_3^2+k_5^2\right)}{\left(1+\frac{r^4}{r_0}+\frac{a^2}{a_0}\right)^4}+\dfrac{\left(\frac{2ar^2}{r_0}\right)^2\left(r^4k_3^2+k_4^2\right)}{\left(1+\frac{r^4}{r_0}+\frac{a^2}{a_0}\right)^4}\right)$$ | ||
- | has at least one positive real root. | + | has at least one positive real root. |
Denote p, q, $\delta$ as coefficients related to parameters in DDEs. Due to the limited space, these coefficients can be found in supplementary data.<br /> | Denote p, q, $\delta$ as coefficients related to parameters in DDEs. Due to the limited space, these coefficients can be found in supplementary data.<br /> | ||
According to the Cardano's Formula, | According to the Cardano's Formula, | ||
Line 120: | Line 122: | ||
If $q = 0$, $p<0$, then also exists a center of oscillation. In this case, derivative of period with respect to both Arabinose and IPTG are 0.<br /> | If $q = 0$, $p<0$, then also exists a center of oscillation. In this case, derivative of period with respect to both Arabinose and IPTG are 0.<br /> | ||
In fact, in our case - when Arabinose $\in [0,10] $ and IPTG $\in [0,10]$ - belongs to the first aspect, which means both Arabinose and IPTG contribute to the period.<br /> | In fact, in our case - when Arabinose $\in [0,10] $ and IPTG $\in [0,10]$ - belongs to the first aspect, which means both Arabinose and IPTG contribute to the period.<br /> | ||
- | |||
<!----------------------------------------------Main content end------------------------------------------------------> | <!----------------------------------------------Main content end------------------------------------------------------> |
Latest revision as of 03:39, 28 September 2013
Stability of DDEs
Goal
To analyze whether it is stable against environment changes.Results
Basing on the equations, since applying their Taylor series makes the equations formed in a linear one keeping the topology of the solution to the original equations, the characteristic equations can be presented: $$E(\mu) = \left(\mu+\lambda\frac{\gamma}{(Ce+a)^2}\right)(\mu+d_{a/r})\left(\mu+k_{fa}+\lambda\frac{\gamma}{(Ce+a_{uf})^2}\right)-k_{fa}T_acopy_a(k_3E_1+k_4E_2+k_5E_3) = 0$$ $$\begin{cases} E_1 = \dfrac{\frac{2a}{a_0}e^{-2\mu \tau}\left(1+\frac{r^4}{r_0}e^{-4\mu \tau}\right)}{\left(1+\frac{r^4}{r_0}e^{-4 \mu \tau}+\frac{a^2}{a_0}e^{-2 \mu\tau}\right)^2}\\ E_2 = \dfrac{2ae^{-2 \mu\tau}\frac{r^2}{r_0}e^{-2 \mu\tau}}{\left(1+\frac{r^4}{r_0}e^{-4 \mu\tau}+\frac{a^2}{a_0}e^{-2\mu\tau}\right)^2}\\ E_3 = \dfrac{\frac{2a}{a_0}e^{-2\mu \tau}}{\left(1+\frac{r^4}{r_0}e^{-4 \mu\tau}+\frac{a^2}{a_0}e^{-2\mu\tau}\right)^2} \end{cases}$$ If there were at least one periodical solution, the equation should have at least one imaginary root.Denote$ \begin{cases} c_1 = \lambda\frac{\gamma}{(Ce+a)^2}\\ c_2 = d_{a/r}\\ c_3 = k_{fa}+\lambda\frac{\gamma}{(Ce+a)^2}\\ c_4 = k_{fa}T_a(k_3E_1+k_4E_2+k_5E_3)copy_a \end{cases} $
Namely, $E(\mu) = (\mu+c_1)(\mu+c_2)(\mu+c_3)-c_4 = 0$ has imaginary root(s).
Set $\mu = iy$, $y\in R$ Thus $iy(c_1c_2+c_2c_3+c_1c_3-y^2)-(c_1+c_2+c_3)y^2+c_1c_2c_3 = c_4$ is required for imaginary root(s).
Namely, $ \begin{cases} y(c_1c_2+c_2c_3+c_1c_3-y^2) = Im(c_4) \\ -(c_1+c_2+c_3)y^2+c_1c_2c_3 = Re(c_4) \end{cases} $
Namely $\|y(c_1c_2+c_2c_3+c_1c_3-y^2\|^2+\|-(c_1+c_2+c_3)y^2+c_1c_2c_3\|^2=\|c_4\|^2$
Set $x=y^2$
Thus the existence of periodical solution is equal to: $$x^3+(c_1^2+c_2^2+c_3^2)x^2+(c_1^2c_2^2+c_2^2c_3^2+c_1^2c_3^2)x+c_1^2c_2^2c_3^2 = (k_{fa}T_acopy_a)^2\left(\dfrac{\left(\frac{2a}{a_0}\right)^2\left(k_3^2+k_5^2\right)}{\left(1+\frac{r^4}{r_0}+\frac{a^2}{a_0}\right)^4}+\dfrac{\left(\frac{2ar^2}{r_0}\right)^2\left(r^4k_3^2+k_4^2\right)}{\left(1+\frac{r^4}{r_0}+\frac{a^2}{a_0}\right)^4}\right)$$ has at least one positive real root. Denote p, q, $\delta$ as coefficients related to parameters in DDEs. Due to the limited space, these coefficients can be found in supplementary data.
According to the Cardano's Formula, If $q<0$, $\delta>0$,then there exists a center of oscillation. In this case, derivative of period with respect to both Arabinose and IPTG are not 0.
If $q = 0$, $p<0$, then also exists a center of oscillation. In this case, derivative of period with respect to both Arabinose and IPTG are 0.
In fact, in our case - when Arabinose $\in [0,10] $ and IPTG $\in [0,10]$ - belongs to the first aspect, which means both Arabinose and IPTG contribute to the period.