Team:Cornell/project/drylab

From 2013.igem.org

(Difference between revisions)
Line 17: Line 17:
<br>
<br>
Once the fungus has been successfully transformed, we need to grow a sufficiently large amount of mycelia to produce organofoam. In order to view our final product, we decided to build a custom incubation chamber to produce the optimal environmental conditions needed to grow fungal mycelium. <br><br>
Once the fungus has been successfully transformed, we need to grow a sufficiently large amount of mycelia to produce organofoam. In order to view our final product, we decided to build a custom incubation chamber to produce the optimal environmental conditions needed to grow fungal mycelium. <br><br>
-
Fungi are grown most easily in a hot and humid environment making control over temperature and humidity the primary objective. Light levels and atmospheric carbon dioxide play secondary roles and are future goals for the incubator. In order to control these environmental factors, we decided to build a custom incubator. While commercial incubators are available, very few handle all four of these factors. Those that do are typically greenhouse-level environmental controllers, which far exceed what we need. Thus, we decided on a bench-top-sized incubator which would be large enough to culture enough fungi but would still be portable. <br>
+
Fungi are grown most easily in a hot and humid environment making control over temperature and humidity the primary objective. Light levels and atmospheric carbon dioxide play secondary roles and are future goals for the incubator. In order to control these environmental factors, we decided to build a custom incubator. While commercial incubators are available, very few handle all four of these factors. Those that do are typically greenhouse-level environmental controllers, which far exceed what we need. Thus, we decided on a bench-top-sized incubator which would be large enough to culture enough fungi but would still be portable. <br><br>
 +
Thus far, we have completed the construction of our incubator chassis and our heating and humidity control circuits.  Control of these two variables is the most critical aspect of our incubator.  Our future goals include design and implementation of light and carbon dioxide control. <br> 
<div style="width:image width px; font-size:90%; text-align:center;"><img src="https://static.igem.org/mediawiki/2013/3/30/Incubationchamber.JPG" alt="temperaturecalibration" style="max-height:none"><br>
<div style="width:image width px; font-size:90%; text-align:center;"><img src="https://static.igem.org/mediawiki/2013/3/30/Incubationchamber.JPG" alt="temperaturecalibration" style="max-height:none"><br>
<img src="https://static.igem.org/mediawiki/2013/4/46/Incubationcrosssection.jpg" alt="temperaturecalibration" style="max-height:none"> Solidworks sketches of proposed incubator design and cross-section.</div> <br>
<img src="https://static.igem.org/mediawiki/2013/4/46/Incubationcrosssection.jpg" alt="temperaturecalibration" style="max-height:none"> Solidworks sketches of proposed incubator design and cross-section.</div> <br>

Revision as of 20:31, 26 October 2013

Cornell University Genetically Engineered Machines

Drylab Overview


Once the fungus has been successfully transformed, we need to grow a sufficiently large amount of mycelia to produce organofoam. In order to view our final product, we decided to build a custom incubation chamber to produce the optimal environmental conditions needed to grow fungal mycelium.

Fungi are grown most easily in a hot and humid environment making control over temperature and humidity the primary objective. Light levels and atmospheric carbon dioxide play secondary roles and are future goals for the incubator. In order to control these environmental factors, we decided to build a custom incubator. While commercial incubators are available, very few handle all four of these factors. Those that do are typically greenhouse-level environmental controllers, which far exceed what we need. Thus, we decided on a bench-top-sized incubator which would be large enough to culture enough fungi but would still be portable.

Thus far, we have completed the construction of our incubator chassis and our heating and humidity control circuits. Control of these two variables is the most critical aspect of our incubator. Our future goals include design and implementation of light and carbon dioxide control.
temperaturecalibration
temperaturecalibration Solidworks sketches of proposed incubator design and cross-section.