Team:MIT/Protein
From 2013.igem.org
(Difference between revisions)
(Created page with "{{MIT-results2}} <html> <head> <script> document.title = "MIT iGEM - Protein Signals Overview"; $(document).ready(function() { $("#accordion").accordion("option", "animated",...") |
|||
(4 intermediate revisions not shown) | |||
Line 6: | Line 6: | ||
$(document).ready(function() { | $(document).ready(function() { | ||
$("#accordion").accordion("option", "animated", false); | $("#accordion").accordion("option", "animated", false); | ||
- | $("#accordion").accordion("activate", | + | $("#accordion").accordion("activate", 2); |
$("#accordion").accordion("option", "animated", 'slide'); | $("#accordion").accordion("option", "animated", 'slide'); | ||
}); | }); | ||
Line 14: | Line 14: | ||
<div id="col_left"> | <div id="col_left"> | ||
+ | <h1>Overview of Protein-based Cell-Cell Communication</h1> | ||
+ | While miRNA are useful in their own respect, it’s not currently known how miR-451 is naturally targeted into exosomes, making it difficult to engineer a system of sending any generic RNA. Luckily, research has shown that proteins can be targeted into exosomes by using an oligomerizing protein domain called Acyl-TyA (Shen, 2011). By fusing our protein signal to an Acyl-TyA domain, it’s possible to target our signal protein into exosomes and send it to another cell to evoke a response. <br><br> | ||
+ | |||
+ | Our goal is to use Acyl-TyA to target generic protein signals into exosomes which allow for cell-cell communication by facilitating the transfer of a signal protein from a sender cell to a receiver cell. The general procedure begins with creating an Acyl-TyA fusion protein and testing the signal’s function within single cells to determine whether the fusion was successful. Then, once the signal’s function is verified, we use Jurkat T cells to produce exosomes containing our signal and apply these exosomes to receiver cells—the signal would then enter the receiver cells via the exosomes and activate a specific receiver circuit. Finally, the signal producing Jurkat T cells are to be cocultured together with receiver cells to determine whether cell-cell communication has been achieved. | ||
+ | <p> <p> | ||
+ | |||
+ | Shen, B et al. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem. (2011) | ||
</div> <!--End col_left--> | </div> <!--End col_left--> | ||
</body> | </body> | ||
</html> | </html> |
Latest revision as of 02:22, 29 October 2013
Overview of Protein-based Cell-Cell Communication
While miRNA are useful in their own respect, it’s not currently known how miR-451 is naturally targeted into exosomes, making it difficult to engineer a system of sending any generic RNA. Luckily, research has shown that proteins can be targeted into exosomes by using an oligomerizing protein domain called Acyl-TyA (Shen, 2011). By fusing our protein signal to an Acyl-TyA domain, it’s possible to target our signal protein into exosomes and send it to another cell to evoke a response.Our goal is to use Acyl-TyA to target generic protein signals into exosomes which allow for cell-cell communication by facilitating the transfer of a signal protein from a sender cell to a receiver cell. The general procedure begins with creating an Acyl-TyA fusion protein and testing the signal’s function within single cells to determine whether the fusion was successful. Then, once the signal’s function is verified, we use Jurkat T cells to produce exosomes containing our signal and apply these exosomes to receiver cells—the signal would then enter the receiver cells via the exosomes and activate a specific receiver circuit. Finally, the signal producing Jurkat T cells are to be cocultured together with receiver cells to determine whether cell-cell communication has been achieved.
Shen, B et al. Protein targeting to exosomes/microvesicles by plasma membrane anchors. J Biol Chem. (2011)