Team:Cornell/project/background/fungal genetic engineering

From 2013.igem.org

(Difference between revisions)
 
(4 intermediate revisions not shown)
Line 17: Line 17:
<div class="eight columns">
<div class="eight columns">
<br>
<br>
-
Recent years have shown increasing interest in the genetic engineering of filamentous fungi. With this interest has come many developments in transformation methods. Currently, there are three main methods commonly used to transform fungal species with recombinant DNA: <i>Agrobacterium</i> mediated transformation and protoplasting [1].
+
Recent years have shown increasing interest in the genetic engineering of filamentous fungi. With this interest has come many developments in transformation methods. Currently, there are two main methods commonly used to transform fungal species with recombinant DNA: <i>Agrobacterium</i> mediated transformation and protoplasting [1].
<br><br>
<br><br>
Line 32: Line 32:
                               <div class="twelve columns">
                               <div class="twelve columns">
-
The more common method, however, involves protoplasting.  Protoplasts are formed by using commercially available enzymes to remove the wall from fungal cells.  Once these fragile cells are formed, they can be transformed with polyethylene glycol (PEG).  By exposing the fragile protoplasts to PEG and recombinant DNA the cells uptake the DNA. Integration of the DNA into the fungal genome can then occur via homologous recombination, random insertion, or restriction enzyme mediated integration (REMI) [2]. Typically, homologous recombination is the most efficient, though this varies by species. Transformation markers are typically used in order to select for transformants. In fungal strains, these typically include resistances for hygromycin and geneticin.
+
The more common method, however, involves protoplasting.  Protoplasts are formed using commercially available enzymes to remove the wall from fungal cells.  Once these fragile cells are formed, they can be transformed with polyethylene glycol (PEG).  By exposing the fragile protoplasts to PEG and recombinant DNA the cells uptake the DNA. Integration of the DNA into the fungal genome can then occur via homologous recombination, random insertion, or restriction enzyme mediated integration (REMI) [2]. Typically, homologous recombination is the most efficient, though this varies by species.  
-
 
+
<br> <br>
<br> <br>
With both <i>Agrobacterium</i> mediated transformation and protoplasting, selection markers are used to select successful transformants.  Two commonly used selection markers are the antibiotics hygromycin and geneticin, which are both effective against the strains used in our project: <i>Ganoderma lucidum</i> and <i>Cochliobolus heterostrophus</i>.   
With both <i>Agrobacterium</i> mediated transformation and protoplasting, selection markers are used to select successful transformants.  Two commonly used selection markers are the antibiotics hygromycin and geneticin, which are both effective against the strains used in our project: <i>Ganoderma lucidum</i> and <i>Cochliobolus heterostrophus</i>.   
-
<br><br>
 
-
Protoplasting of both <i>Ganoderma lucidum</i> and <i>Cochliobolus heterostrophus</i> was attempted but has thus far only been successful with <i>Cochliobolus heterostrophus</i>. The enzymes typically used for protoplasting <i>Ganoderma lucidum</i> are exclusively available in China, so we attempted to use alternate enzymes unsuccessfully [4].  The <i>Cochliobolus</i> protoplasts were then transformed with various constructs. Because protoplasting of <i>Ganoderma lucidum</i> was unsuccessful, we also began preliminary work to transform <i>Ganoderma lucidum</i> with <i>Agrobacterium</i> mediated integration.
 
</div>
</div>
</div>
</div>

Latest revision as of 03:04, 29 October 2013

Cornell University Genetically Engineered Machines

Fungal Genetic Engineering


Recent years have shown increasing interest in the genetic engineering of filamentous fungi. With this interest has come many developments in transformation methods. Currently, there are two main methods commonly used to transform fungal species with recombinant DNA: Agrobacterium mediated transformation and protoplasting [1].

Agrobacterium tumefaciens mediated transformation (AMT) is a method by which Agrobacterium are utilized to transfect fungal cells [3]. Genetic constructs are first transformed into the T-DNA of A. tumefaciens. A. tumefaciens, when co-cultured with fungi, will then transfect the fungal cells, inserting the gene of interest into the fungal genetic material. This DNA can then be incorporated into the genome through random insertions or homologous recombination.

Cochliobolus heterostrophus
The more common method, however, involves protoplasting. Protoplasts are formed using commercially available enzymes to remove the wall from fungal cells. Once these fragile cells are formed, they can be transformed with polyethylene glycol (PEG). By exposing the fragile protoplasts to PEG and recombinant DNA the cells uptake the DNA. Integration of the DNA into the fungal genome can then occur via homologous recombination, random insertion, or restriction enzyme mediated integration (REMI) [2]. Typically, homologous recombination is the most efficient, though this varies by species.

With both Agrobacterium mediated transformation and protoplasting, selection markers are used to select successful transformants. Two commonly used selection markers are the antibiotics hygromycin and geneticin, which are both effective against the strains used in our project: Ganoderma lucidum and Cochliobolus heterostrophus.

References

1. Weld, R. J., Plummer, K. M., Carpenter, M. A., & Ridgeway, H. J. (n.d.). Appraoches to functional genomics in filamentous fungi. N.p.: Nature.

2. Turgeon, G. B., Condon, B., Liu, J., & Zhang, N. (2010). Protoplast Transformation of Filamentous Fungi (Vol. 638). N.p.: Molecular and Cell Biology for Fungi.

3. Feldmann, K. A., & Marks, D. M. (1986). Agrobacterium-mediated transformation of germinating seeds of Arabidopsi thaliana: A non-tissue culture approach. N.p.: Zoecon Research Institute.

4. Sun, L., Cai, H., Xu, W., Hu, Y., Gao, Y., & Lin, Z. (2001). Efficient Transformation of The Medicinal Mushroom Ganoderma Lucidum (19th ed.). N.p.: Plant Molecular Biology Reporter.