Team:Osaka/Modeling
From 2013.igem.org
(Prototype team page) |
|||
(75 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
- | + | {{Yes24da}} | |
- | + | ||
<html> | <html> | ||
- | < | + | <head> |
- | <div | + | <style> |
- | + | p.iwakiri{ | |
+ | font-family: "MS 明朝",serif; | ||
+ | font-size: 16px; | ||
+ | } | ||
+ | p.iwakiri2{ | ||
+ | font-family: "MS 明朝",serif; | ||
+ | font-size: 22px; | ||
+ | text-align:center; | ||
+ | } | ||
+ | h.iwakiri2{ | ||
+ | font-family: "MS 明朝",serif; | ||
+ | font-size: 30px; | ||
+ | text-align:center; | ||
+ | } | ||
+ | |||
+ | </style> | ||
+ | </head> | ||
+ | <body style="background-color:white; height:3200px;"> | ||
+ | <style> | ||
+ | #iwa-bun{background-image: url("https://static.igem.org/mediawiki/2013/3/32/Team-bg-01.jpg"); | ||
+ | } | ||
+ | </style> | ||
+ | <div> | ||
+ | <img src="https://static.igem.org/mediawiki/2013/4/42/Mode-top2.png" style="position:absolute; width:600px; top:130px; left:50%; margin-left:-380px;"> | ||
</div> | </div> | ||
- | <div id=" | + | <div id="iwa-bun" style="margin-top:280px; width:100%;"> |
- | + | <div style="position:relative; width:950px; left:50%; margin-left:-450px;"> | |
+ | <h class="iwakiri2">iGEM Osaka Theory Group have made mathematical models to understand how colony patterns look like.</h> | ||
+ | <br> | ||
+ | <br> | ||
+ | <p class="iwakiri">Syuichi Iwakiri built differential equations to describe the movement of E.coli and nutrition.</p> | ||
+ | <p class="iwakiri">And Hiroki Nishiyama did simulations of the equations.</p> | ||
+ | |||
+ | <p class="iwakiri">In the equation on the picture , A means the number of type A-Ecoli , B means the number of type B-Ecoli , </p> | ||
+ | <p class="iwakiri">and N means the concentration of nutrition.</p> | ||
+ | |||
+ | |||
+ | |||
+ | <img src="https://static.igem.org/mediawiki/2013/0/0d/Siki.jpg" style="position:absolute; width:600px; top:250px; left:50%; margin-left:-300px; margin-bottom:200px;"> | ||
+ | |||
+ | |||
+ | |||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <div style="margin-top: 300px;"> | ||
+ | <p class="iwakiri">The first partial differential equation of A has 3 factors.</p> | ||
+ | <p class="iwakiri">The first one is the diffusion of A , the second one is the growth of A , </p> | ||
+ | <p class="iwakiri">and the third one is the transition from A to B. The transition happens only when N is smaller than No.</p> | ||
+ | |||
+ | <p class="iwakiri">The second partial differential equation of B has 2 factors.</p> | ||
+ | <p class="iwakiri">The first one is the diffusion of B , and the second one is the transition from A to B.</p> | ||
+ | |||
+ | <p class="iwakiri">The third partial differential equation of N has 3 factors.</p> | ||
+ | <p class="iwakiri">The first one is the diffusion of N , and the second one is the consume by A , </p> | ||
+ | <p class="iwakiri">the third one is the virtual consume by B (b is the consume rate and c is the produce rate).</p> | ||
+ | |||
+ | <p class="iwakiri">The Theory Group have discovered a unique patterns , </p> | ||
+ | <p class="iwakiri">for example , a fractal pattern and cross-like pattern.</p> | ||
+ | <br> | ||
+ | <br> | ||
+ | |||
+ | <p class="iwakiri">We show several patterns that we got from the simulations below.</p> | ||
+ | <p class="iwakiri">The gif files show how the number of A type bacterias(Z-axis) develop in 2D area(X-Y plate).</p> | ||
</div> | </div> | ||
- | |||
- | |||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | |||
+ | |||
+ | <div style="width:100%; height:500px;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2013/0/0d/Siki.jpg" style="position:absolute; width:600px; top:1000px; left:50%; margin-left:-300px; margin-top:600px"> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | <div style="width:100%; height:150px;"> | ||
+ | <img src="https://static.igem.org/mediawiki/2013/e/e9/Footer.jpg" style="position:absolute; width:300px; width:100%; bottom:0px;"> | ||
+ | </div> | ||
+ | |||
+ | </body> | ||
</html> | </html> | ||
- | <!-- *** | + | BELOW WE SHOW ONE OF THE PROGRAMMING CODE WE HAVE MADE. <br><br> |
+ | |||
+ | module my_precision | ||
+ | implicit none | ||
+ | integer,parameter :: wp = selected_real_kind(p=20) !Change P to change max digit | ||
+ | |||
+ | end module my_precision | ||
+ | |||
+ | program abc2 | ||
+ | use my_precision | ||
+ | implicit none | ||
+ | |||
+ | real(wp)::A(200,200,2000),B(200,200,2000),N(200,200,2000) | ||
+ | !$$$$$$ !RESULT(2000,2000,2000) | ||
+ | REAL::Da,Db,Dn,N1,N2,N3,Ma,Mb,Ea,Eb,F,Ra,Rb,K,C | ||
+ | INTEGER::T,X,Y,Q,R,S,dT,dX,dY,TEND,XEND,YEND,PT | ||
+ | print*, 'start' | ||
+ | |||
+ | !............INPUT_ZERO.............. | ||
+ | T=0 | ||
+ | X=0 | ||
+ | Y=0 | ||
+ | dT=0 | ||
+ | dX=0 | ||
+ | dY=0 | ||
+ | Q=0 | ||
+ | R=0 | ||
+ | S=0 | ||
+ | TEND=0 | ||
+ | XEND=0 | ||
+ | YEND=0 | ||
+ | Da=0 | ||
+ | Db=0 | ||
+ | Dn=0 | ||
+ | PT=0.d0 | ||
+ | N1=0.d0 | ||
+ | N2=0.d0 | ||
+ | N3=0.d0 | ||
+ | Ma=0.d0 | ||
+ | Mb=0.d0 | ||
+ | Ea=0.d0 | ||
+ | Eb=0.d0 | ||
+ | F=0.d0 | ||
+ | Ra=0.d0 | ||
+ | Rb=0.d0 | ||
+ | C=0.d0 | ||
+ | K=0.d0 | ||
+ | |||
+ | |||
+ | DO S=1,2000 | ||
+ | PRINT*,'S',S | ||
+ | DO R=1,200 | ||
+ | print*,'R',R | ||
+ | DO Q=1,200 | ||
+ | A(Q,R,S)=0 !A(X,Y,T) | ||
+ | B(Q,R,S)=0 | ||
+ | N(Q,R,S)=0 | ||
+ | !RESULT(2000,2000,2000)=0 | ||
+ | ENDDO | ||
+ | ENDDO | ||
+ | ENDDO | ||
+ | |||
+ | print*,'finish input zero' | ||
+ | |||
+ | !............INITIALIZATION.......... | ||
+ | |||
+ | !..Mortaility rate.. | ||
+ | Ma=0.05 !0.05 | ||
+ | Mb=0.05 !0.05 | ||
+ | |||
+ | !..Energy Usage Rate.. | ||
+ | Ea=0.145 !0.145 | ||
+ | Eb=0.145 | ||
+ | |||
+ | !..Energy Produce Rate.. | ||
+ | F=0.25 !0.25 0.5? | ||
+ | |||
+ | !..Growth Rate.. | ||
+ | Ra=0.2 !0.2 | ||
+ | Rb=0.2 !0.2 | ||
+ | |||
+ | !..A to B Transformation Rate.. | ||
+ | C=0.05 !0.05 | ||
+ | |||
+ | !..Kankyou Shuyousu.. | ||
+ | K=1000 | ||
+ | |||
+ | !..AREA.. | ||
+ | TEND=495 | ||
+ | XEND=100 | ||
+ | YEND=100 | ||
+ | |||
+ | !..delta..do not make them 0.1 | ||
+ | dX=1 | ||
+ | dY=1 | ||
+ | dT=1 | ||
+ | |||
+ | !..Kakusan Keisuu.. | ||
+ | Da=0.1 | ||
+ | Db=0.1 | ||
+ | Dn=0.1 | ||
+ | |||
+ | A(50,50,3)=100 | ||
+ | B(50,50,3)=100 | ||
+ | DO Q=3,XEND+1 | ||
+ | DO R=3,YEND+1 | ||
+ | N(Q,R,3)=100 | ||
+ | ENDDO | ||
+ | ENDDO | ||
+ | |||
+ | N1=20 | ||
+ | N2=60 | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | !............MAIN CALCULATION........ | ||
+ | |||
+ | |||
+ | DO T=3,TEND | ||
+ | print*,'T',T,DX,DX | ||
+ | DO X=3,XEND | ||
+ | DO Y=3,YEND | ||
+ | |||
+ | PT=T+1 | ||
+ | |||
+ | IF (N(X,Y,T) < N1) THEN | ||
+ | A(X,Y,PT)=Da*dT*((A(X+dX,Y,T)+A(X-dX,Y,T)-2*A(X,Y,T))/dX**2+(A(X,Y+dY,T)+A(X,Y-dY,T)-2*A(X,Y,T))/dY**2)+A(X,Y,T) | ||
+ | A(X,Y,PT)=A(X,Y,PT)-Ma*A(x,y,t)-C*A(x,y,t) | ||
+ | |||
+ | B(X,Y,PT)=Db*dT*((B(X+dX,Y,T)+B(X-dX,Y,T)-2*B(X,Y,T))/dX**2+(B(X,Y+dY,T)+B(X,Y-dY,T)-2*B(X,Y,T))/dY**2)+B(X,Y,T) | ||
+ | B(X,Y,PT)=B(X,Y,PT)-Mb*B(x,y,t)+C*A(x,y,t) | ||
+ | |||
+ | N(X,Y,PT)=Dn*dT*((N(X+dX,Y,T)+N(X-dX,Y,T)-2*N(X,Y,T))/dX**2+(N(X,Y+dY,T)+N(X,Y-dY,T)-2*N(X,Y,T))/dY**2)+N(X,Y,T) | ||
+ | N(X,Y,PT)=N(X,Y,PT)-Ea*A(x,y,t)+(F-Eb)*B(x,y,t) | ||
+ | |||
+ | ENDIF | ||
+ | |||
+ | IF (N(X,Y,T) >= N1 .and. N(X,Y,T) <N2) THEN | ||
+ | A(X,Y,PT)=Da*dT*((A(X+dX,Y,T)+A(X-dX,Y,T)-2*A(X,Y,T))/dX**2+(A(X,Y+dY,T)+A(X,Y-dY,T)-2*A(X,Y,T))/dY**2)+A(X,Y,T) | ||
+ | A(X,Y,PT)=A(X,Y,PT)+Ra*A(x,y,t)*(1-A(x,y,t)/K)-C*A(x,y,t) | ||
+ | |||
+ | B(X,Y,PT)=Db*dT*((B(X+dX,Y,T)+B(X-dX,Y,T)-2*B(X,Y,T))/dX**2+(B(X,Y+dY,T)+B(X,Y-dY,T)-2*B(X,Y,T))/dY**2)+B(X,Y,T) | ||
+ | B(X,Y,PT)=B(X,Y,PT)+C*A(x,y,t)!+Rb*B(x,y,t)*(1-B(x,y,t)/K) | ||
+ | |||
+ | N(X,Y,PT)=Dn*dT*((N(X+dX,Y,T)+N(X-dX,Y,T)-2*N(X,Y,T))/dX**2+(N(X,Y+dY,T)+N(X,Y-dY,T)-2*N(X,Y,T))/dY**2)+N(X,Y,T) | ||
+ | N(X,Y,PT)=N(X,Y,PT)-Ea*A(x,y,t)+(F-Eb)*B(x,y,t) | ||
+ | |||
+ | ENDIF | ||
+ | |||
+ | IF (N(X,Y,T) >= N2) THEN | ||
+ | A(X,Y,PT)=Da*dT*((A(X+dX,Y,T)+A(X-dX,Y,T)-2*A(X,Y,T))/dX**2+(A(X,Y+dY,T)+A(X,Y-dY,T)-2*A(X,Y,T))/dY**2)+A(X,Y,T) | ||
+ | A(X,Y,PT)=A(X,Y,PT)+Ra*A(x,y,t)*(1-A(x,y,t)/K) | ||
+ | |||
+ | B(X,Y,PT)=Db*dT*((B(X+dX,Y,T)+B(X-dX,Y,T)-2*B(X,Y,T))/dX**2+(B(X,Y+dY,T)+B(X,Y-dY,T)-2*B(X,Y,T))/dY**2)+B(X,Y,T) | ||
+ | !B(X,Y,PT)=B(X,Y,PT)+Rb*B(x,y,t)*(1-B(x,y,t)/K) | ||
+ | |||
+ | N(X,Y,PT)=Dn*dT*((N(X+dX,Y,T)+N(X-dX,Y,T)-2*N(X,Y,T))/dX**2+(N(X,Y+dY,T)+N(X,Y-dY,T)-2*N(X,Y,T))/dY**2)+N(X,Y,T) | ||
+ | N(X,Y,PT)=N(X,Y,PT)-Ea*A(x,y,t)+(F-Eb)*B(x,y,t) | ||
+ | ENDIF | ||
+ | |||
+ | ENDDO | ||
+ | ENDDO | ||
+ | ENDDO | ||
+ | |||
+ | |||
+ | OPEN(22,FILE='Blast21c.txt',POSITION='APPEND') | ||
+ | |||
+ | DO X=3,XEND | ||
+ | DO Y=3,YEND | ||
+ | WRITE(22,*)X,Y,B(X,Y,905),B(X,Y,805),B(X,Y,705),B(X,Y,605),B(X,Y,505),B(X,Y,405),B(X,Y,305),B(X,Y,205),B(X,Y,105),B(X,Y,5) | ||
+ | !B(X,Y,905),B(X,Y,895),B(X,Y,815),B(X,Y,785),B(X,Y,755),B(X,Y,725),B(X,Y,695),B(X,Y,665),B(X,Y,635),B(X,Y,605) | ||
+ | |||
+ | ENDDO | ||
+ | ENDDO | ||
+ | |||
+ | CLOSE(22) | ||
+ | |||
+ | OPEN(24,FILE='Alast21c.txt',POSITION='APPEND') | ||
+ | |||
+ | DO X=3,XEND | ||
+ | DO Y=3,YEND | ||
+ | WRITE(24,*)X,Y,A(X,Y,905),A(X,Y,805),A(X,Y,705),A(X,Y,605),A(X,Y,505),A(X,Y,405),A(X,Y,305),A(X,Y,205),A(X,Y,105),A(X,Y,5) | ||
+ | |||
+ | !X,Y,A(X,Y,905),A(X,Y,895),A(X,Y,815),A(X,Y,785),A(X,Y,755),A(X,Y,725),A(X,Y,695),A(X,Y,665),A(X,Y,635),A(X,Y,605) | ||
+ | |||
+ | ENDDO | ||
+ | ENDDO | ||
+ | |||
+ | CLOSE(24) | ||
+ | |||
+ | |||
+ | OPEN(26,FILE='Alast21d.txt',POSITION='APPEND') | ||
+ | |||
+ | DO X=3,XEND | ||
+ | DO Y=3,YEND | ||
+ | WRITE(26,*)X,Y,A(X,Y,1785),A(X,Y,1705),A(X,Y,1605),A(X,Y,1505),A(X,Y,1405),A(X,Y,1305),A(X,Y,1205),A(X,Y,1055),A(X,Y,1005) | ||
+ | |||
+ | ENDDO | ||
+ | ENDDO | ||
+ | |||
+ | CLOSE(26) | ||
+ | |||
+ | OPEN(28,FILE='Blast21d.txt',POSITION='APPEND') | ||
+ | |||
+ | DO X=3,XEND | ||
+ | DO Y=3,YEND | ||
+ | WRITE(28,*)X,Y,B(X,Y,1785),B(X,Y,1705),B(X,Y,1605),B(X,Y,1505),B(X,Y,1405),B(X,Y,1305),B(X,Y,1205),B(X,Y,1055),B(X,Y,1005) | ||
+ | |||
+ | ENDDO | ||
+ | ENDDO | ||
+ | |||
+ | CLOSE(28) | ||
+ | |||
+ | OPEN(32,FILE='Nlast21.txt',POSITION='APPEND') | ||
+ | |||
+ | DO X=3,XEND | ||
+ | DO Y=3,YEND | ||
+ | WRITE(32,*)X,Y,N(X,Y,1995),N(X,Y,275),N(X,Y,255),N(X,Y,235),N(X,Y,215),N(X,Y,195),N(X,Y,175),N(X,Y,155),N(X,Y,135),N(X,Y,115) | ||
+ | |||
+ | ENDDO | ||
+ | ENDDO | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
+ | |||
+ | CLOSE(32) | ||
+ | |||
- | + | end program abc2 | |
+ | <br> | ||
+ | <br> | ||
+ | <br><br><br> | ||
+ | <br> |
Latest revision as of 04:08, 28 September 2013
Syuichi Iwakiri built differential equations to describe the movement of E.coli and nutrition.
And Hiroki Nishiyama did simulations of the equations.
In the equation on the picture , A means the number of type A-Ecoli , B means the number of type B-Ecoli ,
and N means the concentration of nutrition.
The first partial differential equation of A has 3 factors.
The first one is the diffusion of A , the second one is the growth of A ,
and the third one is the transition from A to B. The transition happens only when N is smaller than No.
The second partial differential equation of B has 2 factors.
The first one is the diffusion of B , and the second one is the transition from A to B.
The third partial differential equation of N has 3 factors.
The first one is the diffusion of N , and the second one is the consume by A ,
the third one is the virtual consume by B (b is the consume rate and c is the produce rate).
The Theory Group have discovered a unique patterns ,
for example , a fractal pattern and cross-like pattern.
We show several patterns that we got from the simulations below.
The gif files show how the number of A type bacterias(Z-axis) develop in 2D area(X-Y plate).
BELOW WE SHOW ONE OF THE PROGRAMMING CODE WE HAVE MADE.
module my_precision
implicit none integer,parameter :: wp = selected_real_kind(p=20) !Change P to change max digit
end module my_precision
program abc2
use my_precision implicit none real(wp)::A(200,200,2000),B(200,200,2000),N(200,200,2000)
!$$$$$$ !RESULT(2000,2000,2000)
REAL::Da,Db,Dn,N1,N2,N3,Ma,Mb,Ea,Eb,F,Ra,Rb,K,C INTEGER::T,X,Y,Q,R,S,dT,dX,dY,TEND,XEND,YEND,PT
print*, 'start'
!............INPUT_ZERO.............. T=0 X=0 Y=0 dT=0 dX=0 dY=0 Q=0 R=0 S=0 TEND=0 XEND=0 YEND=0 Da=0 Db=0 Dn=0 PT=0.d0 N1=0.d0 N2=0.d0 N3=0.d0 Ma=0.d0 Mb=0.d0 Ea=0.d0 Eb=0.d0 F=0.d0 Ra=0.d0 Rb=0.d0 C=0.d0 K=0.d0
DO S=1,2000
PRINT*,'S',S DO R=1,200 print*,'R',R DO Q=1,200 A(Q,R,S)=0 !A(X,Y,T) B(Q,R,S)=0 N(Q,R,S)=0 !RESULT(2000,2000,2000)=0 ENDDO ENDDO
ENDDO
print*,'finish input zero'
!............INITIALIZATION..........
!..Mortaility rate.. Ma=0.05 !0.05 Mb=0.05 !0.05
!..Energy Usage Rate.. Ea=0.145 !0.145 Eb=0.145
!..Energy Produce Rate.. F=0.25 !0.25 0.5?
!..Growth Rate.. Ra=0.2 !0.2 Rb=0.2 !0.2
!..A to B Transformation Rate.. C=0.05 !0.05
!..Kankyou Shuyousu.. K=1000
!..AREA.. TEND=495 XEND=100 YEND=100
!..delta..do not make them 0.1 dX=1 dY=1 dT=1
!..Kakusan Keisuu.. Da=0.1 Db=0.1 Dn=0.1
A(50,50,3)=100 B(50,50,3)=100
DO Q=3,XEND+1 DO R=3,YEND+1 N(Q,R,3)=100 ENDDO ENDDO
N1=20 N2=60
!............MAIN CALCULATION........
DO T=3,TEND
print*,'T',T,DX,DX DO X=3,XEND DO Y=3,YEND PT=T+1 IF (N(X,Y,T) < N1) THEN A(X,Y,PT)=Da*dT*((A(X+dX,Y,T)+A(X-dX,Y,T)-2*A(X,Y,T))/dX**2+(A(X,Y+dY,T)+A(X,Y-dY,T)-2*A(X,Y,T))/dY**2)+A(X,Y,T) A(X,Y,PT)=A(X,Y,PT)-Ma*A(x,y,t)-C*A(x,y,t) B(X,Y,PT)=Db*dT*((B(X+dX,Y,T)+B(X-dX,Y,T)-2*B(X,Y,T))/dX**2+(B(X,Y+dY,T)+B(X,Y-dY,T)-2*B(X,Y,T))/dY**2)+B(X,Y,T) B(X,Y,PT)=B(X,Y,PT)-Mb*B(x,y,t)+C*A(x,y,t) N(X,Y,PT)=Dn*dT*((N(X+dX,Y,T)+N(X-dX,Y,T)-2*N(X,Y,T))/dX**2+(N(X,Y+dY,T)+N(X,Y-dY,T)-2*N(X,Y,T))/dY**2)+N(X,Y,T) N(X,Y,PT)=N(X,Y,PT)-Ea*A(x,y,t)+(F-Eb)*B(x,y,t) ENDIF
IF (N(X,Y,T) >= N1 .and. N(X,Y,T) <N2) THEN A(X,Y,PT)=Da*dT*((A(X+dX,Y,T)+A(X-dX,Y,T)-2*A(X,Y,T))/dX**2+(A(X,Y+dY,T)+A(X,Y-dY,T)-2*A(X,Y,T))/dY**2)+A(X,Y,T) A(X,Y,PT)=A(X,Y,PT)+Ra*A(x,y,t)*(1-A(x,y,t)/K)-C*A(x,y,t) B(X,Y,PT)=Db*dT*((B(X+dX,Y,T)+B(X-dX,Y,T)-2*B(X,Y,T))/dX**2+(B(X,Y+dY,T)+B(X,Y-dY,T)-2*B(X,Y,T))/dY**2)+B(X,Y,T) B(X,Y,PT)=B(X,Y,PT)+C*A(x,y,t)!+Rb*B(x,y,t)*(1-B(x,y,t)/K) N(X,Y,PT)=Dn*dT*((N(X+dX,Y,T)+N(X-dX,Y,T)-2*N(X,Y,T))/dX**2+(N(X,Y+dY,T)+N(X,Y-dY,T)-2*N(X,Y,T))/dY**2)+N(X,Y,T) N(X,Y,PT)=N(X,Y,PT)-Ea*A(x,y,t)+(F-Eb)*B(x,y,t) ENDIF
IF (N(X,Y,T) >= N2) THEN A(X,Y,PT)=Da*dT*((A(X+dX,Y,T)+A(X-dX,Y,T)-2*A(X,Y,T))/dX**2+(A(X,Y+dY,T)+A(X,Y-dY,T)-2*A(X,Y,T))/dY**2)+A(X,Y,T) A(X,Y,PT)=A(X,Y,PT)+Ra*A(x,y,t)*(1-A(x,y,t)/K) B(X,Y,PT)=Db*dT*((B(X+dX,Y,T)+B(X-dX,Y,T)-2*B(X,Y,T))/dX**2+(B(X,Y+dY,T)+B(X,Y-dY,T)-2*B(X,Y,T))/dY**2)+B(X,Y,T) !B(X,Y,PT)=B(X,Y,PT)+Rb*B(x,y,t)*(1-B(x,y,t)/K) N(X,Y,PT)=Dn*dT*((N(X+dX,Y,T)+N(X-dX,Y,T)-2*N(X,Y,T))/dX**2+(N(X,Y+dY,T)+N(X,Y-dY,T)-2*N(X,Y,T))/dY**2)+N(X,Y,T) N(X,Y,PT)=N(X,Y,PT)-Ea*A(x,y,t)+(F-Eb)*B(x,y,t) ENDIF ENDDO ENDDO
ENDDO
OPEN(22,FILE='Blast21c.txt',POSITION='APPEND')
DO X=3,XEND DO Y=3,YEND WRITE(22,*)X,Y,B(X,Y,905),B(X,Y,805),B(X,Y,705),B(X,Y,605),B(X,Y,505),B(X,Y,405),B(X,Y,305),B(X,Y,205),B(X,Y,105),B(X,Y,5) !B(X,Y,905),B(X,Y,895),B(X,Y,815),B(X,Y,785),B(X,Y,755),B(X,Y,725),B(X,Y,695),B(X,Y,665),B(X,Y,635),B(X,Y,605)
ENDDO ENDDO
CLOSE(22)
OPEN(24,FILE='Alast21c.txt',POSITION='APPEND')
DO X=3,XEND DO Y=3,YEND WRITE(24,*)X,Y,A(X,Y,905),A(X,Y,805),A(X,Y,705),A(X,Y,605),A(X,Y,505),A(X,Y,405),A(X,Y,305),A(X,Y,205),A(X,Y,105),A(X,Y,5) !X,Y,A(X,Y,905),A(X,Y,895),A(X,Y,815),A(X,Y,785),A(X,Y,755),A(X,Y,725),A(X,Y,695),A(X,Y,665),A(X,Y,635),A(X,Y,605)
ENDDO ENDDO
CLOSE(24)
OPEN(26,FILE='Alast21d.txt',POSITION='APPEND')
DO X=3,XEND DO Y=3,YEND
WRITE(26,*)X,Y,A(X,Y,1785),A(X,Y,1705),A(X,Y,1605),A(X,Y,1505),A(X,Y,1405),A(X,Y,1305),A(X,Y,1205),A(X,Y,1055),A(X,Y,1005)
ENDDO ENDDO
CLOSE(26)
OPEN(28,FILE='Blast21d.txt',POSITION='APPEND')
DO X=3,XEND DO Y=3,YEND
WRITE(28,*)X,Y,B(X,Y,1785),B(X,Y,1705),B(X,Y,1605),B(X,Y,1505),B(X,Y,1405),B(X,Y,1305),B(X,Y,1205),B(X,Y,1055),B(X,Y,1005)
ENDDO ENDDO
CLOSE(28)
OPEN(32,FILE='Nlast21.txt',POSITION='APPEND')
DO X=3,XEND DO Y=3,YEND WRITE(32,*)X,Y,N(X,Y,1995),N(X,Y,275),N(X,Y,255),N(X,Y,235),N(X,Y,215),N(X,Y,195),N(X,Y,175),N(X,Y,155),N(X,Y,135),N(X,Y,115) ENDDO ENDDO
CLOSE(32)
end program abc2