Team:KU Leuven/Project/MeS

From 2013.igem.org

(Difference between revisions)
Line 143: Line 143:
</div>
</div>
-
<!-- Synopsis -->
+
<!-- Plants -->
<div class="row-fluid">
<div class="row-fluid">
  <div class="span12 white">
  <div class="span12 white">
Line 154: Line 154:
   <div class="span8">
   <div class="span8">
-
     <a id="AB101 Synopsis"></a>
+
     <a id="Effect on plants"></a>
     <h3>Synopsis</h3>
     <h3>Synopsis</h3>
-
     <p align="justify">During a long period of co-evolution, plants and aphids have established a complex interaction. On the one hand, aphids have established complex life cycles involving extensive phenotype plasticity with rapid population growth (Blackman and Eastop, 1984) and a very short generation time (Morrison and Peairs, 1998). On the other hand, plants have also evolved delicate and complicated defence systems comprising constitutive defence traits and defence pathways induced upon aphid attack (Chen 2008). Breeders and growers are still struggling to find an efficient strategy for aphid control in major crop plants, as the damage can run in the millions. The KU Leuven iGEM project has an answer to this problem. Our project consists of a genetically engineered bacteria that can reduce the aphid damage on a sustainable way by hacking into their communication system.  
+
     <p align="justify">Plant resistance to biotrophic pathogens is classically thought to be mediated through SA signalling. Salicylic acid (SA), a phenolic phytohormone, is involved in many functions such as mediating in plant defence against pathogens. SA induces the production of pathogenesis-related (PR) proteins and is involved in the systemic acquired resistance (SAR), which is a "whole-plant" resistance response that occurs following an earlier localised exposure to a pathogen. SAR is analogous to the innate immune system found in animals. The resistance observed following induction of SAR is effective against a wide range of pathogens and the activation of SAR requires the accumulation of endogenous SA. SA modifications such as methylation and amino acid conjugation provide biological specificity in plant defence responses (Loake et al. 2007).
 +
 
 +
Methyl salicylate (MeSA), a volatile ester, is normally absent in plants but is dramatically induced upon pathogen infection. It acts as a mobile or volatile inducer of SAR by carrying this ‘under attack’ signal to neighbouring plants, following hydrolysis by methyl esterase in it’s immediate surrounding. MeSA is synthesised by SA carboxyl methyltransferase (SAMT).
 +
 
</p>
</p>
   </div>
   </div>

Revision as of 20:59, 6 September 2013

Secret garden

Congratulations! You've found our secret garden! Follow the instructions below and win a great prize at the World jamboree!


  • A video shows that two of our team members are having great fun at our favourite company. Do you know the name of the second member that appears in the video?
  • For one of our models we had to do very extensive computations. To prevent our own computers from overheating and to keep the temperature in our iGEM room at a normal level, we used a supercomputer. Which centre maintains this supercomputer? (Dutch abbreviation)
  • We organised a symposium with a debate, some seminars and 2 iGEM project presentations. An iGEM team came all the way from the Netherlands to present their project. What is the name of their city?

Now put all of these in this URL:https://2013.igem.org/Team:KU_Leuven/(firstname)(abbreviation)(city), (loose the brackets and put everything in lowercase) and follow the very last instruction to get your special jamboree prize!

tree ladybugcartoon

iGem


Aphid feeding

Figure 1ǀ Pea aphids extracting sap from the stem and leaves of garden peas.

Synopsis

Plant resistance to biotrophic pathogens is classically thought to be mediated through SA signalling. Salicylic acid (SA), a phenolic phytohormone, is involved in many functions such as mediating in plant defence against pathogens. SA induces the production of pathogenesis-related (PR) proteins and is involved in the systemic acquired resistance (SAR), which is a "whole-plant" resistance response that occurs following an earlier localised exposure to a pathogen. SAR is analogous to the innate immune system found in animals. The resistance observed following induction of SAR is effective against a wide range of pathogens and the activation of SAR requires the accumulation of endogenous SA. SA modifications such as methylation and amino acid conjugation provide biological specificity in plant defence responses (Loake et al. 2007). Methyl salicylate (MeSA), a volatile ester, is normally absent in plants but is dramatically induced upon pathogen infection. It acts as a mobile or volatile inducer of SAR by carrying this ‘under attack’ signal to neighbouring plants, following hydrolysis by methyl esterase in it’s immediate surrounding. MeSA is synthesised by SA carboxyl methyltransferase (SAMT).