Team:Tsinghua-E/Part1

From 2013.igem.org

(Difference between revisions)
Line 2: Line 2:
<html xmlns="http://www.w3.org/1999/xhtml">
<html xmlns="http://www.w3.org/1999/xhtml">
<style type="text/css">
<style type="text/css">
-
#content{height:2760px;}
+
#content{height:1760px;}
p{font-size:120%}
p{font-size:120%}
.memberx {position:absolute;top:60px;left:5px;height:215px;width;300px;}
.memberx {position:absolute;top:60px;left:5px;height:215px;width;300px;}
Line 17: Line 17:
</div>
</div>
-
<div class="tmc" style="height:2645px;">
+
<div class="tmc" style="height:1645px;">
</div>
</div>
-
<div class="neirong" style="height:2625px;">
+
<div class="neirong" style="height:1625px;">
<h3>Part 1: THU-E Mutation Part</h3> <br />
<h3>Part 1: THU-E Mutation Part</h3> <br />
  <p> A plasmid  used for the construction of high-diversity library in vivo ingenome level. In  this vector, highly error-prone <em>dnaQ</em> mutant, <em>mutD</em><a href="#_ENREF_1" title="Lou, 2012 #499">1</a> was cloned downstream  of <em>araBAD</em> promoter to control the  mutation rate of the target genome by the concentration of <em>araBAD</em> promoter’s inducer, L-arabinose, in a strict manner.<em>E. Coli</em> JM109 carrying different vectors  of pBAD_B0030-<em>mutD</em>-<em>sfGFP</em>, pBAD_B0032-<em>mutD</em>-<em>sfGFP</em> and pBAD_SDA_RBS-<em>mutD-sfGFP</em>(this RBS sequence was derived  from the RBS sequence upstream of sfGFP in original AraC_pBAD_CI_OR222-sfGFP  vector<a href="#_ENREF_2" title="Lou, 2012 #499">2</a>)were  constructed. By detecting the induced fluorescence intensity, we found that pBAD_B0030-<em>mutD</em>-<em>sfGFP</em>,  andpBAD_SDA_RBS-<em>mutD- sfGFP</em>have  relatively higher <em>mutD</em> expression. The increaseof mutation rate induced  by our mutation part was measured by quantifying the reversion of rifampinresistance  caused by mutation in genome.pBAD_SDA_RBS-<em>mutD-  sfGFP</em>could increase the genome mutation rate up to 10 times compared with  negative control with 1g/L induction concentration of L-arabinose. <br />
  <p> A plasmid  used for the construction of high-diversity library in vivo ingenome level. In  this vector, highly error-prone <em>dnaQ</em> mutant, <em>mutD</em><a href="#_ENREF_1" title="Lou, 2012 #499">1</a> was cloned downstream  of <em>araBAD</em> promoter to control the  mutation rate of the target genome by the concentration of <em>araBAD</em> promoter’s inducer, L-arabinose, in a strict manner.<em>E. Coli</em> JM109 carrying different vectors  of pBAD_B0030-<em>mutD</em>-<em>sfGFP</em>, pBAD_B0032-<em>mutD</em>-<em>sfGFP</em> and pBAD_SDA_RBS-<em>mutD-sfGFP</em>(this RBS sequence was derived  from the RBS sequence upstream of sfGFP in original AraC_pBAD_CI_OR222-sfGFP  vector<a href="#_ENREF_2" title="Lou, 2012 #499">2</a>)were  constructed. By detecting the induced fluorescence intensity, we found that pBAD_B0030-<em>mutD</em>-<em>sfGFP</em>,  andpBAD_SDA_RBS-<em>mutD- sfGFP</em>have  relatively higher <em>mutD</em> expression. The increaseof mutation rate induced  by our mutation part was measured by quantifying the reversion of rifampinresistance  caused by mutation in genome.pBAD_SDA_RBS-<em>mutD-  sfGFP</em>could increase the genome mutation rate up to 10 times compared with  negative control with 1g/L induction concentration of L-arabinose. <br />
-
  <strong>1 Schaaper, R. M. MECHANISMS OF MUTAGENESIS IN THE ESCHERICHIA-COLI MUTATOR MUTD5 - ROLE OF DNA MISMATCH REPAIR. <em>Proc. Natl. Acad. Sci. U. S. A.</em> 85, 8126-8130,doi:10.1073/pnas.85.21.8126  (1988).</strong><br />
+
   
-
  <strong>2 Lou, C. B., Stanton, B., Chen, Y. J., Munsky, B. &amp;  Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from  genetic context. <em>Nature Biotechnology</em> 30, 1137-+, doi:10.1038/nbt.2401 (2012).</strong><strong> </strong></p>
+
<p align="center"><br />
<p align="center"><br />
   <img border="0" width="446" height="308" src="/wiki/images/f/f1/Mut.jpg" /><br />
   <img border="0" width="446" height="308" src="/wiki/images/f/f1/Mut.jpg" /><br />
Line 31: Line 30:
   <img border="0" width="413" height="255" src="/wiki/images/a/a3/Part1II.png" /> <br />
   <img border="0" width="413" height="255" src="/wiki/images/a/a3/Part1II.png" /> <br />
   Figure.3 Conception  illustration of the working mechanism of <em>mutD</em></p>
   Figure.3 Conception  illustration of the working mechanism of <em>mutD</em></p>
 +
 +
<strong>1 Schaaper, R. M. MECHANISMS OF MUTAGENESIS IN THE ESCHERICHIA-COLI  MUTATOR MUTD5 - ROLE OF DNA MISMATCH REPAIR. <em>Proc. Natl. Acad. Sci. U. S. A.</em> 85, 8126-8130,doi:10.1073/pnas.85.21.8126  (1988).</strong><br />
 +
  <strong>2 Lou, C. B., Stanton, B., Chen, Y. J., Munsky, B. &amp;  Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from  genetic context. <em>Nature Biotechnology</em> 30, 1137-+, doi:10.1038/nbt.2401 (2012).</strong><strong> </strong></p>
</div>
</div>
</html>
</html>

Revision as of 16:28, 22 September 2013

  • Totop

















Part 1: THU-E Mutation Part


A plasmid used for the construction of high-diversity library in vivo ingenome level. In this vector, highly error-prone dnaQ mutant, mutD1 was cloned downstream of araBAD promoter to control the mutation rate of the target genome by the concentration of araBAD promoter’s inducer, L-arabinose, in a strict manner.E. Coli JM109 carrying different vectors of pBAD_B0030-mutD-sfGFP, pBAD_B0032-mutD-sfGFP and pBAD_SDA_RBS-mutD-sfGFP(this RBS sequence was derived from the RBS sequence upstream of sfGFP in original AraC_pBAD_CI_OR222-sfGFP vector2)were constructed. By detecting the induced fluorescence intensity, we found that pBAD_B0030-mutD-sfGFP, andpBAD_SDA_RBS-mutD- sfGFPhave relatively higher mutD expression. The increaseof mutation rate induced by our mutation part was measured by quantifying the reversion of rifampinresistance caused by mutation in genome.pBAD_SDA_RBS-mutD- sfGFPcould increase the genome mutation rate up to 10 times compared with negative control with 1g/L induction concentration of L-arabinose.



Figure.1 plasmid map for THU-E mutation part

Figure.2 rifampicin reversion mutants caused by mutD expression and the counts by agar plate

Figure.3 Conception illustration of the working mechanism of mutD

1 Schaaper, R. M. MECHANISMS OF MUTAGENESIS IN THE ESCHERICHIA-COLI MUTATOR MUTD5 - ROLE OF DNA MISMATCH REPAIR. Proc. Natl. Acad. Sci. U. S. A. 85, 8126-8130,doi:10.1073/pnas.85.21.8126 (1988).
2 Lou, C. B., Stanton, B., Chen, Y. J., Munsky, B. & Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nature Biotechnology 30, 1137-+, doi:10.1038/nbt.2401 (2012).