Team:Hong Kong HKU/project/cargo
From 2013.igem.org
(Difference between revisions)
Line 31: | Line 31: | ||
<div id="content1"> | <div id="content1"> | ||
<font face="impact" size="8" color="green"> | <font face="impact" size="8" color="green"> | ||
- | Polyphosphate Kinase | + | Polyphosphate Kinase<br><br> |
</font> | </font> | ||
<font face="arial" size="2"> | <font face="arial" size="2"> |
Revision as of 12:01, 27 September 2013
Polyphosphate Kinase
The enhanced biological phosphorous removal process is necessarily dependent on the ability of sludge microorganism (PAOs) to take up phosphate and to store it intracellularly in the form of polyP. For polyP formation to occur, phosphate must first be transported into the microbial cell and subsequently converted into ATP before incorporation in the polyP polymer. To improve the efficiency of the whole process, there are two steps we can work on:
(1) Phosphate transport system: increase phosphate uptake by engineering biological phosphate transport system.
(2) PolyP synthesis: engineer microbes to favour the formation of PolyP over the hydrolysis of PolyP, so that higher cell PolyP concentration and longer PolyP chain can be achieved.
The enhanced biological phosphorous removal process is necessarily dependent on the ability of sludge microorganism (PAOs) to take up phosphate and to store it intracellularly in the form of polyP. For polyP formation to occur, phosphate must first be transported into the microbial cell and subsequently converted into ATP before incorporation in the polyP polymer. To improve the efficiency of the whole process, there are two steps we can work on:
(1) Phosphate transport system: increase phosphate uptake by engineering biological phosphate transport system.
(2) PolyP synthesis: engineer microbes to favour the formation of PolyP over the hydrolysis of PolyP, so that higher cell PolyP concentration and longer PolyP chain can be achieved.