Team:KU Leuven/Project/StickerSystem
From 2013.igem.org
Line 32: | Line 32: | ||
<div class="span2 bg-background visible-desktop"> | <div class="span2 bg-background visible-desktop"> | ||
<a href = "https://2013.igem.org/Team:KU_Leuven/Project/Oscillator/Description"> | <a href = "https://2013.igem.org/Team:KU_Leuven/Project/Oscillator/Description"> | ||
- | <i class="livicon activeicon" data-name=" | + | <i class="livicon activeicon" data-name="gears" data-onparent="true" data-color="white"></i> |
</div> | </div> | ||
<div class="span10 icon-text "> | <div class="span10 icon-text "> | ||
- | <h3> | + | <h3>Description</h3> </a> |
<div class="row-fluid"> | <div class="row-fluid"> | ||
<div class="span12"> | <div class="span12"> |
Revision as of 20:23, 2 October 2013
Secret garden
Congratulations! You've found our secret garden! Follow the instructions below and win a great prize at the World jamboree!
- A video shows that two of our team members are having great fun at our favourite company. Do you know the name of the second member that appears in the video?
- For one of our models we had to do very extensive computations. To prevent our own computers from overheating and to keep the temperature in our iGEM room at a normal level, we used a supercomputer. Which centre maintains this supercomputer? (Dutch abbreviation)
- We organised a symposium with a debate, some seminars and 2 iGEM project presentations. An iGEM team came all the way from the Netherlands to present their project. What is the name of their city?
Now put all of these in this URL:https://2013.igem.org/Team:KU_Leuven/(firstname)(abbreviation)(city), (loose the brackets and put everything in lowercase) and follow the very last instruction to get your special jamboree prize!
The Oscillator
Our initial system for the production of methylsalicylate and β-farnesene relied on direct interaction between the bacterium (BanAphids) and the aphid. This is ethically challenging since our BanAphids could end up in the environment. We therefore designed an alternative pheromone production system, whereby the bacteria are kept in semi-permeable pouches. These allow the pheromones to disperse in the air yet the bacteria themselves remain in the bags. In such a system bacteria have limited interactions with their environment. Consequently, honeydew would not touch the bacteria and cannot be used as a trigger, thus we have to adapt our pheromone expression system to these novel conditions. Our solution is an autonomous system. In its simplest form, this would be the constitutive expression of both pheromones. However, the constitutive production of β-farnesene rapidly renders aphids insensitive (Kunert, Reinhold and Gershenzon, 2010). The constant production of methyl-salicylate could be equally disadvantageous since ladybugs may become insensitive to the pheromone and the plant itself may end up in defence-mode too long, causing it to wilt. To prevent habituation β-farnesene en methyl-salicylate should fluctuate. This is typically achieved in an oscillator. Here we will concentrate on the modelling of a β-farnesene oscillator as a proof of principle. The production of methylsalicylate can be regulated similarly.
Modelling
For those who are not afraid of having a more mathematical view on our oscillator, we invite you to read our modelling article, which can be downloaded here.