Team:UCLA

From 2013.igem.org

(Difference between revisions)
Line 35: Line 35:
#abs {
#abs {
  font-size: 13px; font-family: "Trebuchet MS", sans-serif; color: #fff;  
  font-size: 13px; font-family: "Trebuchet MS", sans-serif; color: #fff;  
-
  text-align: left center; line-height: 180%; margin: 20px 0px auto 40px
+
  text-align: left center; line-height: 180%; margin: 10px 0px auto 10px
}
}
#abs-title {
#abs-title {
  font-size: 25px; font-family: "Trebuchet MS", sans-serif; color: #fff;  
  font-size: 25px; font-family: "Trebuchet MS", sans-serif; color: #fff;  
-
  text-align: center; line-height: 180%; margin: 20px 0px auto 40px
+
  text-align: center; line-height: 180%; margin: 10px 5px auto 40px
}
}
#content {
#content {

Revision as of 05:16, 26 September 2013


UCLA iGEM

ABSTRACT
Both the mammalian immune system’s complex defenses and a bacteriophage’s targeting mechanism depend upon protein diversification. These models have inspired innovations ranging from targeted drug delivery to protein display. Using the major tropism determining (MTD) protein expressed on the Bordatella bacteriophage BPP-1, we aim to develop an in vitro system for generating antibody-like proteins that bind specified targets. The MTD protein expressed at the phage’s tail fiber is naturally modified at its variable region to produce nearly 10e13 possible binding variants while preserving its structure. Mutating the MTD’s variable region by PCR can match the massive diversity of MTD in vitro. A library of MTD protein-DNA fusions generated by mRNA display can then be screened for binding against specified protein targets. This in vitro analog to phage display and immune clonal selection can be a powerful tool for constructing target-binding MTD variants with equally many varied applications. slide 2
TEST TEST TEST TEST