Team:Cornell/project/hprac/environment
From 2013.igem.org
(Difference between revisions)
Line 24: | Line 24: | ||
By genetically engineering the fungi used in the material, we will make the manufacturing process more efficient and, as a result, decrease the energy required to make the product. | By genetically engineering the fungi used in the material, we will make the manufacturing process more efficient and, as a result, decrease the energy required to make the product. | ||
<h3>Comprehensive Environmental Assessment</h3> | <h3>Comprehensive Environmental Assessment</h3> | ||
- | As scientists, we are often inclined to reduce complex procedures down to simple, step-by-step protocols. Assessing risk and evaluating environmental impact are no exception; our | + | As scientists, we are often inclined to reduce complex procedures down to simple, step-by-step protocols. Assessing risk and evaluating environmental impact are no exception; our goal this year was to utilize a universal checklist that every environmental iGEM project could fulfill in order to ensure environmental safety, the idea being that we could easily and systematically find answers to questions of environmental safety in scientific literature. We followed the approach from our project last year: Comprehensive Environmental Assessment (CEA). |
<br><br> | <br><br> | ||
CEA differs from traditional methods of risk assessment by recognizing that risk assessment is fundamentally a decision-making process in which scientists, experts, and the public should be engaged. The goal is to foster transparent discussion and use collective judgement to evaluate limitations and trade-offs in order to arrive at holistic conclusions about the primary issues that researchers should address in their research planning [3]. | CEA differs from traditional methods of risk assessment by recognizing that risk assessment is fundamentally a decision-making process in which scientists, experts, and the public should be engaged. The goal is to foster transparent discussion and use collective judgement to evaluate limitations and trade-offs in order to arrive at holistic conclusions about the primary issues that researchers should address in their research planning [3]. | ||
Line 30: | Line 30: | ||
While the Environmental Protection Agency primarily uses the CEA approach for nano materials, the Woodrow Wilson International Center for Scholars in Washington, D.C., launched efforts to lay out a framework to apply CEA to synthetic biology [4]. This groundbreaking project set out to assess the CEA approach's relevance to synthetic biology, in anticipation of the growing demand for synthetic biology-based solutions to global issues. They arrived at the conclusion that scientists should focus on four major areas of risk assessment: altered physiology, competition and biodiversity, evolutionary prediction, and gene transfer [5]. | While the Environmental Protection Agency primarily uses the CEA approach for nano materials, the Woodrow Wilson International Center for Scholars in Washington, D.C., launched efforts to lay out a framework to apply CEA to synthetic biology [4]. This groundbreaking project set out to assess the CEA approach's relevance to synthetic biology, in anticipation of the growing demand for synthetic biology-based solutions to global issues. They arrived at the conclusion that scientists should focus on four major areas of risk assessment: altered physiology, competition and biodiversity, evolutionary prediction, and gene transfer [5]. | ||
<br><br> | <br><br> | ||
- | The Woodrow Wilson Center's Synthetic Biology Project recommended that CEA be applied to more developed projects that were approaching field deployment in order to evaluate it as a risk-assessment approach for synthetic biology at large. | + | The Woodrow Wilson Center's Synthetic Biology Project recommended that CEA be applied to more developed projects that were approaching field deployment in order to evaluate it as a risk-assessment approach for synthetic biology at large. Our project is an ideal fit for such an assessment because our collaboration with Ecovative provides an opportunity for our genetically engineered products to be commercially implemented. |
<br><br> | <br><br> | ||
We began by attempting to apply the Synthetic Biology Project's modified guidelines for prioritizing research questions to our own project as it currently stands. | We began by attempting to apply the Synthetic Biology Project's modified guidelines for prioritizing research questions to our own project as it currently stands. | ||
Line 38: | Line 38: | ||
Above is a simplified schematic of our risk assessment approach, as adapted from the Woodrow Wilson Center. We hope that this framework will prove useful to other environmental iGEM teams in the future. | Above is a simplified schematic of our risk assessment approach, as adapted from the Woodrow Wilson Center. We hope that this framework will prove useful to other environmental iGEM teams in the future. | ||
<br><br> | <br><br> | ||
- | CEA allowed us to think about crucial future work for our project in order to make it suitable for use in the consumer market. | + | CEA allowed us to think about crucial future work for our project in order to make it suitable for use in the consumer market. To assess some concerns about commercialization of our genetically engineered product, we focused a lot of our effort on preventative safety mechanisms. When implemented, our kill switch system would allow us to quickly initiate cell death. Successful implementation of the kill switch system would greatly decrease the chance that our organism could outcompete other organisms and decrease biodiversity. The Cre-Lox recombination system would allow us to remove any potentially harmful genes from the organism before its implementation. The genes we are most concerned with eliminating horizontal transfer of are antibiotic resistance genes. While these genes are necessary for the selection of transformed organisms, once such an organism is isolated, the gene is useless and potentially dangerous. Utilizing the Cre-Lox recombination system on our transformed strains after selection but before market implementation would greatly decrease the chance of horizontal gene transfer. |
</div> | </div> | ||
</div> | </div> |
Revision as of 03:19, 28 September 2013
Environmental Impact
Genetically Engineered Packaging vs. Current Products
Recent reports on polystyrene production demonstrate the increasing demand for environmentally friendly substitutes [1]. We hope to encourage this trend by improving upon Ecovative's existing material. To compare the eco-friendly material to its competitors, we used a rubric created by the Colorado Mycological Society that encourages researchers to develop a biodegradable substitute to harmful disposable products [2]. The areas we researched include product toxicity, raw material toxicity, carbon footprint, biodegradability, and sustainability. Based on the following chart, it is clear that the environmental impact of the genetically engineered product is negligible compared to that of current mainstream materials.By genetically engineering the fungi used in the material, we will make the manufacturing process more efficient and, as a result, decrease the energy required to make the product.
Comprehensive Environmental Assessment
As scientists, we are often inclined to reduce complex procedures down to simple, step-by-step protocols. Assessing risk and evaluating environmental impact are no exception; our goal this year was to utilize a universal checklist that every environmental iGEM project could fulfill in order to ensure environmental safety, the idea being that we could easily and systematically find answers to questions of environmental safety in scientific literature. We followed the approach from our project last year: Comprehensive Environmental Assessment (CEA).CEA differs from traditional methods of risk assessment by recognizing that risk assessment is fundamentally a decision-making process in which scientists, experts, and the public should be engaged. The goal is to foster transparent discussion and use collective judgement to evaluate limitations and trade-offs in order to arrive at holistic conclusions about the primary issues that researchers should address in their research planning [3].
While the Environmental Protection Agency primarily uses the CEA approach for nano materials, the Woodrow Wilson International Center for Scholars in Washington, D.C., launched efforts to lay out a framework to apply CEA to synthetic biology [4]. This groundbreaking project set out to assess the CEA approach's relevance to synthetic biology, in anticipation of the growing demand for synthetic biology-based solutions to global issues. They arrived at the conclusion that scientists should focus on four major areas of risk assessment: altered physiology, competition and biodiversity, evolutionary prediction, and gene transfer [5].
The Woodrow Wilson Center's Synthetic Biology Project recommended that CEA be applied to more developed projects that were approaching field deployment in order to evaluate it as a risk-assessment approach for synthetic biology at large. Our project is an ideal fit for such an assessment because our collaboration with Ecovative provides an opportunity for our genetically engineered products to be commercially implemented.
We began by attempting to apply the Synthetic Biology Project's modified guidelines for prioritizing research questions to our own project as it currently stands. Above is a simplified schematic of our risk assessment approach, as adapted from the Woodrow Wilson Center. We hope that this framework will prove useful to other environmental iGEM teams in the future.
CEA allowed us to think about crucial future work for our project in order to make it suitable for use in the consumer market. To assess some concerns about commercialization of our genetically engineered product, we focused a lot of our effort on preventative safety mechanisms. When implemented, our kill switch system would allow us to quickly initiate cell death. Successful implementation of the kill switch system would greatly decrease the chance that our organism could outcompete other organisms and decrease biodiversity. The Cre-Lox recombination system would allow us to remove any potentially harmful genes from the organism before its implementation. The genes we are most concerned with eliminating horizontal transfer of are antibiotic resistance genes. While these genes are necessary for the selection of transformed organisms, once such an organism is isolated, the gene is useless and potentially dangerous. Utilizing the Cre-Lox recombination system on our transformed strains after selection but before market implementation would greatly decrease the chance of horizontal gene transfer.
References
1. PRNewswire. (2013, June 24). Global Expandable Polystyrene (EPS) Report: 2013 World Market Outlook and Forecast up to 2017 - WSJ.com. The Wall Street Journal - Breaking News, Business, Financial and Economic News, World News & Video - Wall Street Journal - Wsj.com. Retrieved September 23, 2013, from http://online.wsj.com/article/PR-CO-20130624-907027.html2. Zeller, P., & Zocher, D. (n.d.). Ecovative's Breakthrough Biomaterial. Colorado Mycological Society. Retrieved September 23, 2013, from www.cmsweb.org/articles/LR_Ecovative.pdf
3. Dana, G. V., Kuiken, T., Rejeski, D., & Snow, A. A. (2012). Synthetic biology: Four steps to avoid a synthetic-biology disaster. Nature, 483. doi:10.1038/483029a
4. Powers, C. M., Dana, G., Gillespie, P., Gwinn, M. R., Hendren, C. O., Long, T. C., Wang, A., Davis, J. M. (2012). Comprehensive Environmental Assessment: A Meta-Assessment Approach. Environ. Sci. Technol., 46,9202−9208. http://dx.doi.org/10.1021/es3023072
5. Synthetic Biology Project. (2011, July 28). Comprehensive Environmental Assessment and Its Application to Synthetic Biology Applications. Retrieved from http://www.synbioproject.org/events/archive/cea/