Team:Wageningen UR/Cytoskeleton and septa

From 2013.igem.org

(Difference between revisions)
(Approach)
Line 55: Line 55:
== Approach ==
== Approach ==
<html>
<html>
-
<p>In general the same was done for the visualization of the actin cytoskeleton and the septa of <i>A. niger</i>. The genes are already present in <i>A. niger</i> and therefore the genomic DNA was isolated from <i>A. niger</i> and the gene were amplified using PCR. Afterwards a construct was built with an n-terminal GFP fusion using a house internal brick system. To build this construct first the genes were ligated into pJET and verification via sequencing took place. The verified genes that were declared as good were than used to ligate them in the house internal brick system which already contained a GFP fused to the n-terminus. This brick system which also contains a selection marker for <i>A. niger</i> was than introduced into <i>A. niger</i> and via fluorescent microscopy the structures could be observed. </p>
+
<p>For the visualization of the actin cytoskeleton and the septa (by using a H+-ATPase) the genes had to be fused with GFP. To do so a first step was to isolate the DNA from <i>A. niger</i> as the genes are already present in the genomic DNA. Afterwards the genes were amplified using PCR. The primer pairs used for the amplification also added restriction sites to genes that were needed for the ligation into the desired vector later on.</p>
-
<p>For the colorization of the septa a H+-ATPase is used which would be PMA1. This is done because the H+-ATPase is located in the plasma membrane and the septum is a plasma membrane. Around 2% of the plasma membrane are those H+-ATPase’s and they are of great importance for the cells to maintain their intracellular pH, ionic balance and they are needed to maintain the membrane potential which is needed for nutrient uptake. Furthermore it is known that the PMA gene is highly conserved in different plant and fungi species. The similarity in amino acid sequence is between 45-95%. For the H+-ATPase that was used in the experiment described below the similarity was used and the gene known from <i>Aspergillus fumigatus</i> was used. </p>
+
 
 +
<p>The second part was to build the vector needed to successfully transform <i>A. niger</i>. At first the genes obtained via PCR were ligated into a pJET vector. This allowed us to check via sequencing that no mistakes were made during the PCR. After confirmation of the gene it was grown, and isolated from <i>E. coli</i> cut out of the pJET vector and ligated into a house internal brick system. The house internal brick system contains, as shown in picture 1, a GFP fusion on the n-terminus and a xlnD promoter and terminator. This promoter is induced by xylose. Furthermore the vector contains to selection markers. The ampicillin used in <i>E.  coli</i> cloning steps and the pyr gene used for selection in A. niger which leads to an organism that no longer depends on uridine.</p>  
 +
 
 +
<p>Last but not least after obtaining the good house internal brick it was introduced into <i>A. niger</i>. This mutant was grown and replated twice to obtain single colonies. To check the presence of the desired insert the genomic DNA was isolated and this was followed by a PCR using a GFP forward and an actin reverse primer and only GFP and only actin primers. After confirmation of the presence pictures could be made under a fluorescent microscope observing the structures.  
 +
</p>

Revision as of 14:52, 28 September 2013

Cytoskeleton and septa

First steps towards visualization of trafficking

Overview

It is known that A. niger is an excellent producer and secretor of secondary metabolites and organic acids and is therefore a target commonly used in synthetic biology which made it an interesting subject for us as an iGEM team to work with. Resulting from its common use as a secreting organism its infrastructure is attractive because its functionality is crucial for good production and secretion. This is why we labeled the cytoskeleton and the septa by fusing actin, for visualization of the actin cytoskeleton, and a H+-ATPase located in the septa with GFP. The GFP was introduced at the n-terminus and led to the possibility to observe the structures under a fluorescent microscope.


Introduction

The visualization of the actin cytoskeleton of A. niger is used as a first step towards visualization of the infrastructure. It is known that A. niger is a great producer and secretor of secondary metabolites and organic acids and its infrastructure is crucial for this processes.

The actin cytoskeleton is known to be needed for the maintenance of the shape of the cells, to adhere to substances and to help during growth and secretion. It exists of actin cables which are long, thin, parallel fibers and cortical actin patches which are highly polarized. The actin patches are also known to be present in growing tips and help in a structure called Spitzenkörper with growth and secretion. Vesicles are delivered towards the growing tips and its lipids are used for growth. The vesicles are moved towards the Spitzenkörper with the help of microtubules and the actin filaments take them over.

The septa is a permeable membrane between neighboring cells allowing transport and communication between the cells. This structure is ring like and can open and close depending on what is needed at that moment. It is build up of three structures which are actins, septins and formins. All three structures are proven to be crucial for the proper formation of the septal band and work closely together.

Aim

The goal is to visualize trafficking in A. niger by fusing the actin cytoskeleton and a H+-ATPase located in the septa with a fluorescent protein such as GFP on the n-terminus.

Approach

For the visualization of the actin cytoskeleton and the septa (by using a H+-ATPase) the genes had to be fused with GFP. To do so a first step was to isolate the DNA from A. niger as the genes are already present in the genomic DNA. Afterwards the genes were amplified using PCR. The primer pairs used for the amplification also added restriction sites to genes that were needed for the ligation into the desired vector later on.

The second part was to build the vector needed to successfully transform A. niger. At first the genes obtained via PCR were ligated into a pJET vector. This allowed us to check via sequencing that no mistakes were made during the PCR. After confirmation of the gene it was grown, and isolated from E. coli cut out of the pJET vector and ligated into a house internal brick system. The house internal brick system contains, as shown in picture 1, a GFP fusion on the n-terminus and a xlnD promoter and terminator. This promoter is induced by xylose. Furthermore the vector contains to selection markers. The ampicillin used in E. coli cloning steps and the pyr gene used for selection in A. niger which leads to an organism that no longer depends on uridine.

Last but not least after obtaining the good house internal brick it was introduced into A. niger. This mutant was grown and replated twice to obtain single colonies. To check the presence of the desired insert the genomic DNA was isolated and this was followed by a PCR using a GFP forward and an actin reverse primer and only GFP and only actin primers. After confirmation of the presence pictures could be made under a fluorescent microscope observing the structures.