Team:SDU-Denmark/Tour52
From 2013.igem.org
Line 23: | Line 23: | ||
<p> | <p> | ||
- | <a class="popupImg alignRight" style="width:200px" href="https://static.igem.org/mediawiki/2013/d/d7/SDU2013_Characterization_LacIPlac_1.png" title="Figure | + | <a class="popupImg alignRight" style="width:200px" href="https://static.igem.org/mediawiki/2013/d/d7/SDU2013_Characterization_LacIPlac_1.png" title="Figure 1 - FACS results and growth curves of +/-lacI:LVA carrying strains. One triplicate of MG1655 (WT) and two triplicates of MG1655 strains carrying either pSB1C3-Plac-dxs(B. subtilits)-GFP (BBa_K1088008) (-lacI:LVA) or pSB1C3-Pcon-lacI:LVA-term-Plac-dxs(B. subtilits)-GFP (BBa_K1088009) (+lacI:LVA) were grown from OD600 0.005 to approximately 0.2. At this OD the MG1655 triplicate and one triplicate of each strain carrying constructs were induced with 1 mM IPTG at time 0 min. FACS measurements were done at times: -30, 0, 30, 60, 90, 120, and 150 min. |
+ | A) Growth curve shows that WT grows slightly faster than strains bearing plasmids. B) Per cent of population above fluorescence threshold. None of the WT cells were fluorescent, almost all of the -lacI:LVA cells were constitutively fluorescent, and only cells overexpressing LacI:LVA weren’t fluorescent when not induced. Upon induction increasingly per cent of +lacI:LVA became fluorescent and reaches a maximum of 70-75 per cent after 90 min. C) Mean GFP fluorescence of entire population. The -lacI:LVA cells became increasingly more fluorescent over time, both with and without induction. Though, the induced cells were slightly more fluorescent, which is probably because of the relief of repression from LacI naturally present in the cells. For the +lacI:LVA cells the results from B is reflected."> | ||
<img src="https://static.igem.org/mediawiki/2013/d/d7/SDU2013_Characterization_LacIPlac_1.png" style="width:200px" /> | <img src="https://static.igem.org/mediawiki/2013/d/d7/SDU2013_Characterization_LacIPlac_1.png" style="width:200px" /> | ||
- | Figure | + | Figure 1. |
</a> | </a> | ||
Line 43: | Line 44: | ||
<a class="dialogLink" href="http://parts.igem.org/Part:BBa_K1088008">pSB1C3-Plac-dxs <span class="specialWord">(B. subtilits)</span>-GFP</a> or | <a class="dialogLink" href="http://parts.igem.org/Part:BBa_K1088008">pSB1C3-Plac-dxs <span class="specialWord">(B. subtilits)</span>-GFP</a> or | ||
- | <a class="dialogLink" href="http://parts.igem.org/Part:BBa_K1088009">pSB1C3-Pcon-lacI:LVA-term-Plac-dxs <span class="specialWord">(B. subtilits)</span>-GFP</a> were grown from OD<sub>600</sub> 0.005 to approximately 0.2. At this OD the MG1655 triplicate and one triplicate of each strain carrying constructs were induced with 1 mM IPTG at time 0 min. FACS measurements were done at times: -30, 0, 30, 60, 90, 120, and 150 min <b>(Fig. | + | <a class="dialogLink" href="http://parts.igem.org/Part:BBa_K1088009">pSB1C3-Pcon-lacI:LVA-term-Plac-dxs <span class="specialWord">(B. subtilits)</span>-GFP</a> were grown from OD<sub>600</sub> 0.005 to approximately 0.2. At this OD the MG1655 triplicate and one triplicate of each strain carrying constructs were induced with 1 mM IPTG at time 0 min. FACS measurements were done at times: -30, 0, 30, 60, 90, 120, and 150 min <b>(Fig. 1)</b>. |
</p> | </p> | ||
Line 71: | Line 72: | ||
<a class="popupImg alignRight" style="width:200px" href="https://static.igem.org/mediawiki/2013/8/88/SDU2013_Characterization_AraCPara_1.png" title=" | <a class="popupImg alignRight" style="width:200px" href="https://static.igem.org/mediawiki/2013/8/88/SDU2013_Characterization_AraCPara_1.png" title=" | ||
- | + | Figure 2 - A) Normalized intensity of HRT2 mRNA using intensity of 5S rRNA as reference. Duplicates of MG1655 strains carrying either pSB1C3-Para-HRT2 (BBa_K1088024) (-araC) or pSB1C3-Pcon-araC-term-Para-HRT2 (BBa_K1088016) (+araC) were induced with 0.2 % arabinose at time t=0 min (OD<sub>600</sub>=0.8), and samples were taken at times: -2 min, 15 min, and 30 min. The normalized intensity of sample -araC -2min were set to 1 and the other samples are relative to that. Within 15 min of induction the expression levels are at its maximum in both strains, and overexpression of AraC does not seem to be necessary for expression control of the arabinose promoter. | |
B) Northern blot result reflecting diagram. | B) Northern blot result reflecting diagram. | ||
"> | "> | ||
<img src="https://static.igem.org/mediawiki/2013/8/88/SDU2013_Characterization_AraCPara_1.png" style="width:200px" /> | <img src="https://static.igem.org/mediawiki/2013/8/88/SDU2013_Characterization_AraCPara_1.png" style="width:200px" /> | ||
- | Figure | + | Figure 2. |
</a> | </a> | ||
Line 104: | Line 105: | ||
<p> | <p> | ||
- | <span class="intro">The results prove that we are capable</span> of inducing our HRT2 devices with arabinose. There is only little expression before induction and within the first 15 minutes, expression is at its maximum. Overexpression of AraC does not seem to have an effect on the expression levels after 15 min compared to natural levels of AraC. However, it is inconclusive whether AraC might contribute to an effect at times less than 15 minutes after induction. <b>(Fig. | + | <span class="intro">The results prove that we are capable</span> of inducing our HRT2 devices with arabinose. There is only little expression before induction and within the first 15 minutes, expression is at its maximum. Overexpression of AraC does not seem to have an effect on the expression levels after 15 min compared to natural levels of AraC. However, it is inconclusive whether AraC might contribute to an effect at times less than 15 minutes after induction. <b>(Fig. 2)</b>. |
</p> | </p> | ||
Line 143: | Line 144: | ||
</span> | </span> | ||
- | We were capable of producing a standard curve by reacting DMAPP with acid for 2 minutes (instead of the 60 minutes specified in the previous study) <b>(Fig. | + | We were capable of producing a standard curve by reacting DMAPP with acid for 2 minutes (instead of the 60 minutes specified in the previous study) <b>(Fig. 3)</b>. At this time, we obtained optimal peak detection for standard solutions. We were, however, incapable of detecting isoprene, even in high concentrations of bacterial samples treated with acid. The test was expanded to include acid hydrolyzation for 2, 30, 60 or 90 min, yet we could not detect isoprene, and therefore not detect DMAPP. |
</p> | </p> | ||
Line 151: | Line 152: | ||
- | <a class="popupImg alignRight" style="width:300px" href="https://static.igem.org/mediawiki/2013/1/12/SDU2013_Characterization_Dxs_1.png" title="Isoprene production after 2 min hydrolyzation of standard DMAPP solutions (Sigma-Aldrich). 4M H2SO4 was used to hydrolyze 1 mL solutions containing different DMAPP amounts. The produced isoprene was detected using headspace gas chromatography with flame ionization detector. Measurements are single values and shows linearity from 0-1000 pmol DMAPP. The isoprene detection in the sample containing 0 pmol DMAPP was subtracted from the peak heights."> | + | <a class="popupImg alignRight" style="width:300px" href="https://static.igem.org/mediawiki/2013/1/12/SDU2013_Characterization_Dxs_1.png" title="Figure 3 - Isoprene production after 2 min hydrolyzation of standard DMAPP solutions (Sigma-Aldrich). 4M H2SO4 was used to hydrolyze 1 mL solutions containing different DMAPP amounts. The produced isoprene was detected using headspace gas chromatography with flame ionization detector. Measurements are single values and shows linearity from 0-1000 pmol DMAPP. The isoprene detection in the sample containing 0 pmol DMAPP was subtracted from the peak heights."> |
<img src="https://static.igem.org/mediawiki/2013/1/12/SDU2013_Characterization_Dxs_1.png" style="width:300px" /> | <img src="https://static.igem.org/mediawiki/2013/1/12/SDU2013_Characterization_Dxs_1.png" style="width:300px" /> | ||
- | Figure | + | Figure 3. |
</a> | </a> | ||
Line 178: | Line 179: | ||
- | <a class="popupImg alignRight" style="width:300px" href="https://static.igem.org/mediawiki/2013/6/68/SDU2013_Characterization_Dxs_2.png" title="Growth curve of dxs devices. Cells were started at OD600=0.005 and incubated at 37ºC and 180 rpm. 2 triplicates of MG1655 carrying no vector (WT), empty pSB1C3 vector (pSB1C3), pSB1C3-Plac-dxs(B.subtilis) (BBa_K1088011) (No LacI), pSB1C3-Pcon-lacI-Plac-dxs(B.subtilis) (BBa_K1088027) (LacI(N)), or pSB1C3-Pcon-lacI:LVA-Plac-dxs(B.subtilis) (BBa_K1088013) (LacI(LVA)). At time 2.5 hours one of each triplicate was induced with 1 mM IPTG. No growth change was observed."> | + | <a class="popupImg alignRight" style="width:300px" href="https://static.igem.org/mediawiki/2013/6/68/SDU2013_Characterization_Dxs_2.png" title="Figure 4 - Growth curve of dxs devices. Cells were started at OD600=0.005 and incubated at 37ºC and 180 rpm. 2 triplicates of MG1655 carrying no vector (WT), empty pSB1C3 vector (pSB1C3), pSB1C3-Plac-dxs(B.subtilis) (BBa_K1088011) (No LacI), pSB1C3-Pcon-lacI-Plac-dxs(B.subtilis) (BBa_K1088027) (LacI(N)), or pSB1C3-Pcon-lacI:LVA-Plac-dxs(B.subtilis) (BBa_K1088013) (LacI(LVA)). At time 2.5 hours one of each triplicate was induced with 1 mM IPTG. No growth change was observed."> |
<img src="https://static.igem.org/mediawiki/2013/6/68/SDU2013_Characterization_Dxs_2.png" style="width:300px" /> | <img src="https://static.igem.org/mediawiki/2013/6/68/SDU2013_Characterization_Dxs_2.png" style="width:300px" /> | ||
- | Figure | + | Figure 4. |
</a> | </a> | ||
Line 199: | Line 200: | ||
<a class="dialogLink" href="http://parts.igem.org/Part:BBa_K1088027">pSB1C3-Pcon-lacI-Plac-dxs <span class="specialWord">(B. subtilis)</span></a>, or | <a class="dialogLink" href="http://parts.igem.org/Part:BBa_K1088027">pSB1C3-Pcon-lacI-Plac-dxs <span class="specialWord">(B. subtilis)</span></a>, or | ||
- | <a class="dialogLink" href="http://parts.igem.org/Part:BBa_K1088013">pSB1C3-Pcon-lacI:LVA-Plac-dxs <span class="specialWord">(B. subtilis)</span></a> were started from ONC at time 0 hours, OD<sub>600</sub>=0.005, and grown at 37ºC and at 180 rpm. OD<sub>600</sub> measurements were done every half hour, and 1 of each triplicate was induced at time 2.5 hours. All strains grew at the same pace and induction didn’t impair growth rate <b>(Fig. | + | <a class="dialogLink" href="http://parts.igem.org/Part:BBa_K1088013">pSB1C3-Pcon-lacI:LVA-Plac-dxs <span class="specialWord">(B. subtilis)</span></a> were started from ONC at time 0 hours, OD<sub>600</sub>=0.005, and grown at 37ºC and at 180 rpm. OD<sub>600</sub> measurements were done every half hour, and 1 of each triplicate was induced at time 2.5 hours. All strains grew at the same pace and induction didn’t impair growth rate <b>(Fig. 4)</b>. |
</p> | </p> | ||
Revision as of 11:48, 4 October 2013
Characterization
“And by what, O Socrates, is the soul nourished?” - Hippocrates
“By knowledge, of course, I said.” - Socrates
Characterization of our biobricks is a chance for us to prove that our design works as intended. We invite you along on a journey through our attempts to obtain proof of concept; to show that Bacteriorganic Rubber is a true possibility. This page will slowly guide you through our results, but keep in mind that not everything is presented below. For all the details, consult our protocol page where you will find a comprehensive picture of our project.
The question of design and therefore function is two-fold: How do we - and can we - control the expression of our system? And do the expressed proteins work as intended? These are the questions this page sets out to answer. Specifically, we have characterized our regulable biobricks (LacI/Plac and AraC/Para) and our central genes (dxs(b. subtilis) and HRT2)Characterization of LacI/Plac
The dxs gene is placed under the control of the lactose promoter (which is IPTG inducible). Therefore, we assayed our capability of inducing the expression through addition of IPTG. As part of the experiment, it was tested if expression was suppressed prior to induction. The assay was carried out by measuring protein levels of Dxs fused to GFP using Fluorescence Activated Cell Sorting (FACS).A lacI:LVA basic part was available at parts registry, and we a device. The GFP fusion device with and without the lacI:LVA device was assayed to check for expression control. One triplicate of MG1655 and two triplicates of MG1655 strains carrying either pSB1C3-Plac-dxs (B. subtilits)-GFP or pSB1C3-Pcon-lacI:LVA-term-Plac-dxs (B. subtilits)-GFP were grown from OD600 0.005 to approximately 0.2. At this OD the MG1655 triplicate and one triplicate of each strain carrying constructs were induced with 1 mM IPTG at time 0 min. FACS measurements were done at times: -30, 0, 30, 60, 90, 120, and 150 min (Fig. 1).
Strains not overexpressing LacI:LVA does not repress expression from the lactose promoter even without induction, whereas strains overexpressing LacI:LVA represses the promoter until induction. Approximately 90 min after induction of the strain overexpressing LacI:LVA the protein level is at its maximum. Furthermore, the maximum protein level is lower than that of the strain not overexpressing LacI:LVA, and not all of the cells expresses the the Dxs-GFP protein fusion.
Our obtained experience has been added to the experience of the part encoding the lacI:LVA basic part on parts registry
Characterization of AraC/Para
Figure 2. The HRT2 gene is under the control of the arabinose promoter (see Design LINK). We assayed the inducible capabilities of our design and, as part of the experiment, we tested the ability to suppress expression prior to induction. The assay was carried out by measuring the mRNA levels of HRT2 using the Northern blotting technique.To test whether overexpression of AraC improved expression control, devices with and without the araC device were assayed. Duplicates of MG1655 strains carrying either pSB1C3-Para-HRT2 or pSB1C3-Pcon-araC-term-Para-HRT2 were grown to late-exponential phase: OD600=0.8. At this OD, the strains were induced with 0.2 % arabinose at time t=0 min, and samples were taken at times: -2 min, 15 min, and 30 min. Total RNA purified from the samples were run on a gel, blotted onto a membrane, and hybridized with probes specific for HRT2 mRNA and 5S rRNA (loading control), respectively.
The results prove that we are capable of inducing our HRT2 devices with arabinose. There is only little expression before induction and within the first 15 minutes, expression is at its maximum. Overexpression of AraC does not seem to have an effect on the expression levels after 15 min compared to natural levels of AraC. However, it is inconclusive whether AraC might contribute to an effect at times less than 15 minutes after induction. (Fig. 2).
This experience has been added to the experience of the part encoding the arabinose promoter on parts registry.
Characterization of dxs (B. subtilis)
Functionality assayTo optimize the flow through the MEP pathway, the dxs gene was overexpressed, the expectation being increased levels of IPP and DMAPP(see Specification LINK). To examine if overexpression indeed resultats in an increase in substrate, we attempted to assay the levels of DMAPP using a headspace gas chromatography (GC)-technique.
DMAPP was hydrolyzed in acid to the volatile hydrocarbon gas isoprene. The gas was subsequently analyzed with headspace GC. A linear relationship between amount of detected isoprene and DMAPP concentration has previously been established. Source: Alison J. Fisher et. al; Nonradioactive Assay for Cellular Dimethyllyl Diphosphate We were capable of producing a standard curve by reacting DMAPP with acid for 2 minutes (instead of the 60 minutes specified in the previous study) (Fig. 3). At this time, we obtained optimal peak detection for standard solutions. We were, however, incapable of detecting isoprene, even in high concentrations of bacterial samples treated with acid. The test was expanded to include acid hydrolyzation for 2, 30, 60 or 90 min, yet we could not detect isoprene, and therefore not detect DMAPP.
Figure 3. Optimization of the procedure is needed before characterization of the dxs bricks can be completed using this approach. We suspect that the complexity of the bacterial samples is too high, and thus the reaction does not take place as fast as might be necessary for detection in our setup. Sonication of bacterial samples with and without addition of standard DMAPP, and subsequent measurements might shed some light on this hypothesis. However, it should be noted that the GC wasn’t fully functional during the test period, consequently leading to broader peaks and thus lowered the sensitivity of the instrument. On the 3rd of October, we received a mail from Professor Lars Porskjær Christensen, Department of Chemistry-, Bio- and Environmental Technology, University of Southern Denmark:
...The GC has now been repaired and the sensitivity has been improved considerably. The GC-peaks should be very sharp now. This may be the reason that you have not observed any release of isoprene from your samples...MailTranslated from danish”.
Unfortunately, with only 2 days left to wiki-freeze, there was no time for another round of testing.
Growth Experiment
Figure 4.
Carrying the dxs devices and expressing the gene could impair the growth, and hence be important in production purpose. To test if the growth of MG1655 bacteria is impaired when carrying and expressing our dxs devices, we measured the growth rate with OD600 measurements.
2 triplicates of MG1655 carrying no vector, empty pSB1C3 vector, pSB1C3-Plac-dxs (B. subtilis), pSB1C3-Pcon-lacI-Plac-dxs (B. subtilis), or pSB1C3-Pcon-lacI:LVA-Plac-dxs (B. subtilis) were started from ONC at time 0 hours, OD600=0.005, and grown at 37ºC and at 180 rpm. OD600 measurements were done every half hour, and 1 of each triplicate was induced at time 2.5 hours. All strains grew at the same pace and induction didn’t impair growth rate (Fig. 4).
Characterization of HRT2
Rubber purificationTo discover rubber, it is useful to isolate the rubber from the rest of the bacterial cells. This will allow us to remove as many variables in the detection assays as possible. The rubber was purified according to SOP0031 - Rubber purification which was made by us, based on a literature search and chemical evaluation of solubility of the polyisoprene. The cells were sonicated in ethanol suspension, washed in acetone, and extracted in n-hexane (both steps was ON).
We tried two different methods to evaluate the most efficient extraction method. In the first method we tried to wash with acetone and extract with n-hexane in a soxhlet extractor. As the second method, we tried to exclude the time consuming soxhlet steps and washed for a shorter duration with acetone in 50 mL falcon tubes (15 min shake at 37 deg) and extracting the rubber by adding hexane to the cell suspension and spinning down the sample to save the supernatant (hexane solution). We tested the rubber extractions on WT + polyisoprene on both soxhlet and non-soxhlet methods and evaluated the result on H1-NMR. The result seemed similar, and therefore we chose to stay with the non-soxleth method as our SOP for purifying rubber, since the time required for that protocol was significantly less.
MALDI-ToF
We did a thorough literature study of polyisoprene on MALDI-ToF and found that the formation of adducts by adding AgNO3- would make it possible to ionize the long alkene chain even though it has no functional groups that can be ionized.
We tried several matrixes including MBTMBT2-mercaptobenzothiazole, DHBDHB2,5-dihydroxybenzoic acid, CHCACHCAalpha-cyano-4-hydroxycinnamic acid, SASAsinapinic acid and DTDTdithranol but we never had time to test on anything but our standard polyisoprene (Mw 38 kDa,) which unfortunately was too large a molecule to be detected by the bruker MALDI-ToF machine. We have come to the conclusion that the machines’ hardware settings are not matching the requirements for these large molecules and therefore we might still be able to find our sample even though we cannot see our standard, since the sample is expected to be around 2-10 kDa.Unfortunately we have not had the time to test this, since the machine is frequently occupied by other research groups.