|
|
Line 1: |
Line 1: |
| {{Team:Purdue/Header}} | | {{Team:Purdue/Header}} |
- | <!-- *** What falls between these lines is the Alert Box! You can remove it from your pages once you have read and understood the alert *** -->
| + | test |
- | | + | |
- | <html>
| + | |
- | <div id="box" style="width: 700px; margin-left: 137px; padding: 5px; border: 3px solid #000; background-color: #fe2b33;">
| + | |
- | <div id="template" style="text-align: center; font-weight: bold; font-size: large; color: #f6f6f6; padding: 5px;">
| + | |
- | This is a template page. READ THESE INSTRUCTIONS.
| + | |
- | </div>
| + | |
- | <div id="instructions" style="text-align: center; font-weight: normal; font-size: small; color: #f6f6f6; padding: 5px;">
| + | |
- | You are provided with this team page template with which to start the iGEM season. You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki. You can find some examples <a href="https://2009.igem.org/Help:Template/Examples">HERE</a>.
| + | |
- | </div>
| + | |
- | <div id="warning" style="text-align: center; font-weight: bold; font-size: small; color: #f6f6f6; padding: 5px;">
| + | |
- | You <strong>MUST</strong> have all of the pages listed in the menu below with the names specified. PLEASE keep all of your pages within your teams namespace.
| + | |
- | </div>
| + | |
- | </div>
| + | |
- | </html>
| + | |
- | | + | |
- | <!-- *** End of the alert box *** -->
| + | |
- | | + | |
- | | + | |
- | | + | |
- | {|align="justify"
| + | |
- | | + | |
- | |[[Image:Purdue_logo.png|200px|right|frame]]
| + | |
- | |-
| + | |
- | |
| + | |
- | <b>Project Description:</b>
| + | |
- | This year the Purdue iGEM project is titled "Back to the Basics of Synthetic Biology". Synthetic biology has always strived to prove that classical engineering principles are applicable in the field of science; however, several key challenges have yet to be overcome. These include designing robust genetic circuits, predictive expression of proteins, and a standardization of how we, as synthetic biologists, characterize our parts to be continually utilized in ever changing systems. The Taguchi Method is a statistical way to analyze a set of parameters, for example which promoter to use with a gene of interest, and determines a set of experiments to determine which combination of the parameters gives the most robust system to outside noise such as E. coli strain. Optimization of protein expression is done by introducing multiple shine dalgarno sequences into cistrons containing the gene of interest. Finally, collaboration among teams allowed for a new standardized form of submitting characterization of parts to the Parts Registry. These combined help move the field of synthetic biology one step closer to being able to successfully prove that biology can in fact be engineered.
| + | |
- | | + | |
- | |[[Image:Purdue_team.png|right|frame|Your team picture]]
| + | |
- | |-
| + | |
- | |
| + | |
- | |align="center"|[[Team:Purdue | Team Purdue]]
| + | |
- | |}
| + | |
- | | + | |
| <!--- The Mission, Experiments ---> | | <!--- The Mission, Experiments ---> |
| | | |