Team:Purdue/Human Practices/Outreach to High School

From 2013.igem.org

Revision as of 14:31, 27 September 2013 by Jones274 (Talk | contribs)


PurdueLogo2013.png

Outreach to High School

Back to Our Roots

Introduction

In recent years there has been a call to biologists and biological teachers to start a new initiative of biology, termed the “New Biology” which has become the new standard that we are working towards as scientists and educators. This “New Biology” interprets concepts from chemistry, physics, computer science, and engineering to incorporate the new age of biology. This allows biologists to keep up with the fast growing and changing subfields of biology. One of these fields would include synthetic biology.

The goal for this project was to bring about the idea of modeling biological systems to high school AP biology teachers. This will enable students at a young age to enter the world of biology with a notion of how to intertwine the concepts of these different subjects. The students are doing a project with genetically modified arabidopsis plants. There is one plant that is a wild type with another that had a mutation in one of the enzymes of a metabolic pathway. The enzyme can be chemically induced to be produced and the plant will grow as the wild type grows. The exact pathways are explained in Dr. Chappell’s slides: *insert link to slide show*

The presentation was to explain the basics of modeling simple biological systems. As synthetic biologists, we have all experienced the importance and difficulty of modeling biological systems. These systems are rarely at steady state with all of the individual aspects having a large dependence on one another. The mathematical equations become quickly very difficult requiring math skills above the level of most AP biology students. The goal was to explain how to define a system along with the inputs and outputs. This introduces the idea of biology integrated with engineering taking students one step closer to synthetic biology.

The first step was to use a simple word problem that includes a familiar, everyday occurrence to introduce the ideas of defining systems, identifying inputs and outputs, and setting up basic mathematical equations.

Example: Grocery Shopping

Assume that there is a farmer who grew 15 flats of strawberries in one season. She sells the strawberries at $1.50/quart. Each quart container costs her $0.50 each. She then sells the strawberries by the flat to the grocer who wants 15 flats (each flat container has 8 quarts). The grocer then sells the strawberries by the quart for $3.00 each. The grocer has to pay the cashier to work to sell the strawberries at $1.00 a quart. The consumer(s) buy 15 flats of strawberries for $3.00 each. Model this system.

Step 1: Draw a Picture