Team:KU Leuven/Project/StickerSystem
From 2013.igem.org
Secret garden
Congratulations! You've found our secret garden! Follow the instructions below and win a great prize at the World jamboree!
- A video shows that two of our team members are having great fun at our favourite company. Do you know the name of the second member that appears in the video?
- For one of our models we had to do very extensive computations. To prevent our own computers from overheating and to keep the temperature in our iGEM room at a normal level, we used a supercomputer. Which centre maintains this supercomputer? (Dutch abbreviation)
- We organised a symposium with a debate, some seminars and 2 iGEM project presentations. An iGEM team came all the way from the Netherlands to present their project. What is the name of their city?
Now put all of these in this URL:https://2013.igem.org/Team:KU_Leuven/(firstname)(abbreviation)(city), (loose the brackets and put everything in lowercase) and follow the very last instruction to get your special jamboree prize!
The Oscillator
Our initial system for the production of methyl salicylate and β-farnesene relied on direct interaction between the bacteria and the aphids, our BanAphids would be sprayed on the plant. This is ethically and practically challenging since our BanAphids could end up in the environment. We therefore designed an alternative pheromone production system, whereby the bacteria are kept in semi-permeable pouches. These allow the pheromones to disperse in the air yet the bacteria themselves remain in the bags. Consequently, the presence of aphids secreting honeydew cannot be used as a trigger for the production of both pheromones. Since constitutive production of β-farnesene rapidly renders aphids insensitive, concentrations should fluctuate to prevent habituation. This is typically achieved in an oscillator. Here we will mainly focus on the modelling of a β-farnesene oscillator as a proof of principle, a part of it will be actually made in the lab. The production of methyl salicylate can be regulated similarly.
Design
In this part we describe the design of an oscillator that could be useful in biological networks. We created a system that creates synchronized oscillations without depending heavily on the components used. We explain several necessities to obtain a synchronized oscillator, and how we managed to incorporate those within our network.
Modelling
For those who are not afraid of having a more mathematical view on our oscillator, we invite you to read our modelling article, which can be downloaded here.