Team:Cornell/project/hprac/environment

From 2013.igem.org

Revision as of 04:03, 20 September 2013 by N.Bhatt (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Cornell University Genetically Engineered Machines

Environmental Impact of Styrofoam

Summary

Although our research can be applied to a variety of industries, we chose to first focus on one of the top environmental issues of today: the pollution generated by Expanded Polystyrene Foam, commonly known as Styrofoam. The Environmental Protection Agency has identified Styrofoam as the fifth largest creator of waste. Over 14 million tons of polystyrene are produced globally each year. In one lifetime, we produce more polystyrene than 3.5 times the weight of all 7 billion people on earth. Even though the United States accounts for only 4.45% of this population, we are responsible for producing around 21% of the world’s polystyrene. Of these 3 million tons, 2.3 million end up in landfills, while the remainder finds its way to masses of water. Americans throw away 25 million Styrofoam cups a year, which is around 82 cups per person. When left in a landfill, Styrofoam takes over 500 years to degrade, composing at least 30% of every landfill in America. The material is even more environmentally hazardous when it reaches a marine environment. The foam breaks into small pieces that wildlife often mistakes for food. Because the material floats, it easily pollutes coasts and shorelines, making it the second most abundant type of beach debris.

Over 200 cities across America have already banned the harmful substance. Most of these cities are located in the areas of California that border the Pacific Ocean. This year, Chicago began a “No Foam Chicago” campaign to pass similar legislation in the city. On February 14th, Bloomberg announced plans to ban the material in New York City. Soon after, the government of the state of Massachusetts made a similar proposal.

As the public awareness of the negative impact of Styrofoam rapidly grows, so does the demand for an eco-friendly substitute. Current alternatives are more recyclable than Styrofoam. However, when tossed into a landfill or waterway, they cause similar environmental damage. Based on this fact, we believe our research will be most effective in this application.