Team:XMU-China/Content7
From 2013.igem.org
First
By constructing robust circuits in E.coli, we want to build a gene network capable of synchronizing genetic oscillations in multiple levels. Cells can be synchronized at the colony level via quorum sensing, and a gas-phase redox will be signaling (mainly H2O2) between colonies simultaneously. Two scales of coupling ensured extremely consistent oscillations.
First
By constructing robust circuits in E.coli, we want to build a gene network capable of synchronizing genetic oscillations in multiple levels. Cells can be synchronized at the colony level via quorum sensing, and a gas-phase redox will be signaling (mainly H2O2) between colonies simultaneously. Two scales of coupling ensured extremely consistent oscillations.
First
By constructing robust circuits in E.coli, we want to build a gene network capable of synchronizing genetic oscillations in multiple levels. Cells can be synchronized at the colony level via quorum sensing, and a gas-phase redox will be signaling (mainly H2O2) between colonies simultaneously. Two scales of coupling ensured extremely consistent oscillations.
First
By constructing robust circuits in E.coli, we want to build a gene network capable of synchronizing genetic oscillations in multiple levels. Cells can be synchronized at the colony level via quorum sensing, and a gas-phase redox will be signaling (mainly H2O2) between colonies simultaneously. Two scales of coupling ensured extremely consistent oscillations.