Team:Manchester/parametertest
From 2013.igem.org
We have created the first ever model based on uncertainty analysis in iGEM history, and, most importantly, made it functional. This meant we were able to get a series of predictions for the fatty acid biosynthesis pathway, with error bars detailing the extent to which we were able to be confident in our data. Analysis in this area shows that predictions for pathway output are confident. We believe that this method of modelling is an incredibly powerful tool in the investigation
Aim
To use uncertainty modelling to model E.coli fatty acid biosynthesis. Early modelling attempts using traditional methods of modelling were largely unsuccessful, due to the the nature of the fatty acid biosynthesis pathway, and the lack of experimentally defined kinetic values. Rather than use models that were arbitrary or lacked information, we decided to use a less traditional method, based on Monte Carlo sampling, that can give us a clear idea of what the uncertainty of our predictions might be. By embracing this uncertainty, we hoped to create a model with practical, representative results.
The spreadsheets generated from our script can be found here:
Rates (LINK)
Species (LINK)
The concentrations of the metabolites was outputted in tables, as depicted in Figure XXX. Each line represents one simulation with ten different time points within 100 seconds. The whole data set of all simulations was then attributed with colours according concentration values (Dark Red: >4; Pink: > 2; Light red:> 1; White: 1-0.01; Light yellow: <0.01; Dark yellow: <0.0001). Another table was generated out of this chart according to the ordinal data obtained from colouring the metabolite concentrations. This was done to further improve ease of work and making the data more visual. Figure XXX shows the summary of this qualitative concentration distribution for each metabolite. Again, the brighter green a cell is in colour, the more often simulations rendered metabolite concentrations in the specified concentration interval. For example, the last metabolite in the table C18CoA is bright green, because all 41 simulations rendered between 0.01 - 1 mM. Out of this table, a clear distribution becomes obvious: Except for the first six initial replenishing reactions, all metabolite concentrations are within a small reasonable range mostly between 0.01 - 1 mM. Interestingly, in the reaction towards the end of the pathway, which are responsible for removing the metabolites from the system and therefore give rise to stearic and palmitic acid (our desired products) the range of results appears to be significantly narrower, despite the uncertainty.
Upon analysing the degree of certainty in our model, and finding that it was at a level that we believe is suitable for further analysis, we were able to create a series of boxplots showing the range of values found within our simulations for species accumulation after 100 seconds. We focused on the longer chain fatty acids, which are the engineering target of our pathway. The order in which the species are shown in the box plots, Figure XXX, is also the order in which they are formed. This is also shown in Figure XXX, where the colour corresponds to the colour of the bar on the box plot.
Kinetic Pathway modelling demands abundant information of the kinetic parameters. Literature research, however, showed that these were not available sufficiently or involved measurement errors. Hence this knowledge of parameter values often is uncertain. Therefore, we had to choose an approach that is able to deal with these limitations. Uncertainty modelling proved to be the most promising and useful tool for this. Even though the available data was limited, we managed to create a functioning kinetic model of the fatty acid synthesis pathway. This has not been done before and would not have been possible with any traditional approach. A prime example of how our metabolic modelling work directly informed our experimental work is in our decision to biobrick the FabA gene (encoding β-hydroxydecanoyl-ACP dehydrase, shown by the DH_OH reactions in this model). Our uncertainty model had shown us that we would need more kinetic data on key enzymes. The least characterised reaction was catalyzed by the product of the fabA gene, therefore we wished to not only biobrick this gene, but a His-tag to purify the enzyme in order to experimental gauge its activity. However, having taken pains to ensure our model was as realistic as possible, the idea of the insertion of a his-tag that could affect the activity of the enzyme seemed at odds to our overall goal. Therefore, we used further modelling technique to ensure the addition of this his tag would have as little overall bearing on the activity of the enzyme as possible. This can be found here
Kinetic Pathway modelling demands abundant information of the kinetic parameters. Literature research, however, showed that these were not available sufficiently or involved measurement errors. Hence this knowledge of parameter values often is uncertain. Therefore, we had to choose an approach that is able to deal with these limitations. Uncertainty modelling proved to be the most promising and useful tool for this. Even though the available data was limited, we managed to create a functioning kinetic model of the fatty acid synthesis pathway. This has not been done before and would not have been possible with any traditional approach. A prime example of how our metabolic modelling work directly informed our experimental work is in our decision to biobrick the FabA gene (encoding β-hydroxydecanoyl-ACP dehydrase, shown by the DH_OH reactions in this model). Our uncertainty model had shown us that we would need more kinetic data on key enzymes. The least characterised reaction was catalyzed by the product of the fabA gene, therefore we wished to not only biobrick this gene, but a His-tag to purify the enzyme in order to experimental gauge its activity. However, having taken pains to ensure our model was as realistic as possible, the idea of the insertion of a his-tag that could affect the activity of the enzyme seemed at odds to our overall goal. Therefore, we used further modelling technique to ensure the addition of this his tag would have as little overall bearing on the activity of the enzyme as possible. This can be found here
Uncertainty:
In synthetic biology two main classes of computational models are commonly used: constraint-based genome-scale models and differential-equation-based dynamic models. In our project, we employed the latter approach, because we are interested in the concentrations of compounds and their dynamic changes, which cannot be predicted using purely constraint-based models. We also wanted to identify the reactions and corresponding enzymes with the highest control over the fatty acid synthesis pathway; again, this is not possible with constraint-based models.
However, for a dynamic model one needs to know the enzyme kinetic parameters, and these are often unknown or very unreliable for enzymes of fatty acid biosynthesis. We wanted to account for the resulting uncertainty using a new “uncertainty modelling” approach, which can potentially serve as a principled approach to handling parameter uncertainty in the future.
Building models with incorporated acknowledgment of uncertainty will produce specified confidence intervals for all model predictions and thus could lead to robust design of engineered cellular machines of fatty acid synthesis and beyond.
Fatty Acid Biosynthesis
Fatty acid biosynthesis is a process that occurs in all living organisms. Glucose is converted into acetyl-CoA through the citric acid cycle, which is fed into the fatty acid biosynthesis pathway. Here it combines with malonyl-CoA to first form a five carbon compound. The five carbon compound is then being converted into a four carbon compound via four successive steps, executed by the enzymes as indicated in Figure XXX . To this resulting C4 body, another malonyl-CoA is added to form a C7 body - which is converted the same manner as the previous C5 body. A number of unchanging enzymes act on the intermediates of this cyclic pathway to ultimately produce fatty acids. From the initial reaction to the end products the whole pathway numbers 43 reactions, about 60 metabolites and 267 parameters.Steady State
The steady state of a metabolic system is the situation where the concentrations of the pathway intermediates remain constant, although there is metabolic flux through the system.