Team:UT Dallas/Notebook

From 2013.igem.org

Revision as of 00:27, 16 October 2013 by Alecspin (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Protocols

Ligation Protocol

  • Determine insert to vector ratios
  • Calculate the amount of insert needed if 50ng of vector is used (can use different amount of vector)
  • In a PCR tube add the following:
  • 50ng of vector
  • Amount of insert based on ratios (calculated in second step)
  • 2uL of buffer
  • 2uL of DNA ligase
  • Amount of water to bring total volume to 20uL
  • Incubate overnight at 14 degrees Celsius

  • Note: We used T4 DNA ligase and buffer from NEB

    Gel Purification Protocol (QIAquick Gel Extraction Kit)

  • Excise DNA fragment from the agarose gel with a clean, sharp scalpel
  • Weigh the gel slice in a microcentrifuge tube.
  • Add 3 volumes of Buffer QG to 1 volume of gel (100mg~100uL)
  • Incubate at 50 degrees Celsius for 10 min (until the gel slice has completely dissolved)
  • After the gel slice has dissolved completely, check that the color of the mixture is yellow
  • Apply the sample to a QIAquick column, and centrifuge for 1 min
  • Maximum volume of the column is 800uL. For samples larger than this, simply load and spin again.
  • Discard flow-through and place QIAquick column back in the same collection tube
  • To wash, add 750uL of Buffer PE to column and centrifuge for 1 min.
  • Discard the flow-through and centrifuge for additional 1 min. at 13,000rpm
  • Place QIAquick column into a clean 1.5 mL microcentrifuge tube
  • To elute DNA, add 50uL of Buffer EB to the center of the QIAquick membrane, let the column stand for 1 min. and then centrifuge the column for 1 min.

  • Gel Electrophoresis Protocol

  • Making a 1% agarose gel
  • 100mL 1X TBE buffer
  • 1g agarose
  • microwave until agarose dissolves
  • let mixture cool
  • when cool add 8-10uL ethidium bromide
  • stir gently, let cool
  • pour into plate with comb already in place
  • let harden
  • Using the gel
  • Add loading buffer to DNA (for 100uL DNA, add 20uL loading buffer)
  • Load 2uL of DNA ladder into the gel
  • Load DNA into the gel
  • Run at 130V for 30min-1hr

  • Digestion Protocol

  • Using a microcentrifuge tube add the following:
  • ~3000-5000 ng of DNA
  • 10uL Buffer 4
  • 10uL BSA
  • 5uL of appropriate enzyme (if doing a double digest, use 5 uL of both enzymes)
  • Amount of H2O needed to make final volume 100uL
  • Incubate at 37 degrees Celsius for 1hr and 30min

  • Note: We used the following enzymes from NEB: EcoRI-HF, PstI-HF, SpeI, and XbaI. All of which can be double digested with each other using Buffer 4.

    Preparing LB+Appropriate Antibiotic Protocol

  • 200 mL LB broth
  • Autoclave
  • Put control thermometer in H2O (from the sink)
  • Select vented container mode (Do Not Change Program)
  • Let cool to 50 degrees Celsius
  • Add antibiotic (50-100 ug/mL) (10 mg total)
  • Weigh on paper
  • Add to 0.5 mL DI H2O
  • Add to LB mixture when cool enough
  • Store at 4 degrees Celsius

  • Preparing Agar Plates Protocol (Makes 12 (15mm) Plates)

  • 300 mL DI H2O + 11 g LB agar
  • Autoclave
  • Put control thermometer in H2O (from the sink)
  • Select vented container mode (Do Not Change Program)
  • Mix well after autoclaving; let cool to 50 degrees Celsius
  • Add antibiotic (50 to 100 µg/mL) (15 mg total)
  • Weigh on paper
  • Add to 0.5 mL DI H2O
  • Add to LB mixture when cool enough
  • Plate
  • Under flame open lids of all plates
  • Slowly pour agar into plate, avoiding bubbles, when it touches all edges stop pouring
  • Let sit under flames until gel solidifies
  • Replace lids on plates
  • Store upside down at 4 degrees Celsius

  • Preparing Competent Cells Protocol

  • Place 1 colony in 5 mL of LB (with antibiotics if appropriate) Grow overnight at 37 degrees Celsius and 200-300 rpm
  • Inoculate 0.25 mL of the overnight strain into 25 mL of LB
  • Shake at 37oC until the OD650 is 0.6-0.7
  • Harvest cells and resuspend in 12.5 mL ice cold 0.1M MgCl2
  • Harvest immediately and resuspend in 7.5 mL cold 0.1M CaCl2
  • Leave on ice for 30 minutes. Harvest and resuspend in 2.5 mL cold 0.1M CaCl2
  • Leave on ice for 30 minutes
  • For long term storage, use 0.1M CaCl2 in 15% glycerol at step 6 and store cells at -800 degrees Celsius

  • Note: Harvest cells at 5000 rpm for 10 minutes at 4 degrees Celsius

    Miniprep Protocol (from QIAprep Spin Miniprep Kit)

  • Harvest cells at 5400g 10 minutes 40 degrees Celsius (possibly program 1)
  • Resuspend pelleted bacterial cells in 250 µL Buffer P1 and transfer to a microcentrifuge tube
  • Add 250 µL Buffer P2 and mix thoroughly by inverting the tube 4-6 times
  • Add 350 µL Buffer N3 and mix immediately and thoroughly by inverting the tube 4-6 times
  • Centrifuge for 10 minutes at 13000 rpm (~17900g) in a table-top microcentrifuge
  • Apply the supernatant (from step 4) to the QIA prep spin column by decanting or pipetting
  • Centrifuge for 30-60 seconds. Discard the flow-through
  • Wash QIA prep spin column by adding 0.75 mL Buffer PE and centrifuging for 30-60 seconds
  • Discard the flow-through, and centrifuge for 1 minute to remove residual wash buffer
  • To elute DNA, place the QIA prep column in a clean 1.5 mL microcentrifuge tube. Add 50 µL Buffer EB or water to the center of each QIA prep spin column, let stand for 1 minute and centrifuge for 1 minute.

  • Preparing Glycerol Stock Protocol

  • Add 150 µL of 50% glycerol to 350 µL of cells
  • Place in -80C freezer

  • Transformation Protocol

  • With a pipette tip, punch a hole through the foil cover of the DNA plate
  • Add 10 µL of DI water
  • Thaw competent cells on ice
  • Add 1-2 µL of resuspend DNA and 50 µL of thawed competent cells to labeled tubes
  • Incubate the cells on ice for 30 minutes
  • Heat shock the cells at 42 degrees Celsius for 45 sec
  • Incubate the cells on ice for 2 minutes
  • Under flame, add 450 µL SOC broth
  • Incubate at 37 degrees Celsius for 1 hour while rotating or shaking at 300rpm
  • Spread cells on appropriate antibiotic LB plates (usually 100 µL)
  • Incubate at 37 degrees Celsius for 18-24 hours
  • Take a colony, put in 3 mL of LB + appropriate antibiotic
  • Use resulting culture to miniprep DNA and make your own glycerol stock

  • Point mutation Protocol

    1) Create reaction mixture
            5 ul 10x buffer
            10-100 ng DNA
            1 ul of foward primer
            1 ul of reverse primer
            1 ul of dNTP'S
            1.5 ul of Quik Solution reagent
            Bring to 50 ul with NF-H20
            *Then add 1ul Quik Change Lightning Enzyme
    2)Run thermo-cycler (program--mutate)
            1 cycle: @ 95C 2 minutes
            18 cycles:
                    a) 95C x 20 seconds
                    b) 60C x 10 seconds
                    c) 68C x 30 seconds/kb per plasmid length
            1 cycle: 68C 5 minutes
    3) Then add 2 ul of DpnI enzyme directly to each amplification reaction
    4) Pipette up & down several times
    5) Incubate @ 37C x 5 minutes to digest the parent DNA (cuts methylated dna)
    6)Then transform.

    Calendar

    7/5/2013

    Transformation

    [GFP] Kit plate 5. Well 14k. Backbone pSB1A2. Resistance A. i5-5-1

    [LacI] Kit plate 5. Well 20. Backbone pSB1A2. Resistance A. i5-5-2

    7/6/2013

    Colony Picking

    I5-5-1 ?  2 colonies ? picked 2 ? i5-5-3

                                            ? i5-5-4

    I5-5-2 ? 0 colonies

    7/7/2013

    Mini Prep

    I5-5-3: 67.4 ng/ul        [GFP]

    I5-5-4: 98.7 ng/ul        [GFP]

    I5-5-5: 408.7 ng/ul        [+ confiol]

    Test Digestion

    I5-5-31

    I5-5-42

    DNA

    4

    2

    BSA

    1

    1

    Buffer 4

    1

    1

    EcoRI

    1

    1

    Pst

    1

    1

    H2O

    2

    4

    10

    10