Team:XMU-China/Content3

From 2013.igem.org

Revision as of 01:06, 25 September 2013 by TonyWu (Talk | contribs)

LinkUp - Multipurpose HTML Template

Background

Hi, Oscillation!

Are you familiar with oscillation?

No? Oh, you must be kidding!

Let me present you its definition in Wikipedia to help you get a clue. Oscillation is the repetitive variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states1.

It seems that you have met it somewhere, right?

Have you ever used a GPS? Or lasers? Alright, you must have used AC power that supports nearly all electrical appliances in your houses. These three are typical applications of oscillation and amplified that signals in the frequency domain have obvious advantages over those steady-state design in terms of information gathering and procession. Take lasers for example, which are known for their intensity and can be focused to a tight spot over long distance. These characteristics all owe to their spatial coherent in the frequency of the light source.

Oscillation in bacteria

Scientists have proved oscillations also pervade biological systems at all scales as well, from gene expression to cell cycle progression, and these oscillations can incorporate the periodic variation in a parameter over time to generate an oscillatory output2. As mentioned above, oscillations can lead to fantastic applications and benefit our everyday life. Since the output of bacteria oscillations can be detected as a frequency, people started their journey on designing a bacteria reporter.

The noise of gene expression in biological systems, however, slowed our pace in this process, because it will generate noisy or stochastic oscillation with varying amplitudes and frequencies. To deal with this problem, we have to unify the expression of the reporter gene in bacteria. And we found…

First generation of oscillation, the second and the third…Brief intro

Synchronized Oscillation

Yes, we found synchronized oscillation!

It was in 1670s that Christiaan Huygens first observed coupled oscillations: two of his pendulum clocks mounted next to each other on the same support often became synchronized3. To get cells communicate and oscillate in the same amplitude and frequency like the two pendulum clocks, we adopted quorum sensing, a cell-to-cell signaling mechanism that refers to the ability of bacteria to respond to chemical hormone-like molecules called autoinducers, from Vibrio fischeri into our host E.coli (MG1655) using our “hero” synthetic biology to realize synchronization among cells over tens of micrometers4.

QS now or later

As far as we concern, more consistent the oscillation can be if more colonies are synchronized. In order to enhance the communication range of bacteria, a gas-phase redox signal molecular H2O2 is introduced into our circuit. According to a published research5, through H2O2 a faster and long distance instantaneous communication can be achieved to strengthen the oscillation.

For more detailed information about our circuit, please refer to the Mechanism part of our project.

XMU-iGEM 2013

Biome

Introduction

In a synchronized oscillatory system, three important parts should be included: the oscillator, which is the biochemical machinery that generate the oscillatory output; the coupling pathway that ensure the connection among cells; and output pathway, which is also known as a reporter that reflect the state of the oscillator to downstream targets.

Oscillator

Quorum sensing (QS) is a cell-to-cell signaling mechanism that refers to the ability of bacteria to respond to chemical hormone-like molecules called autoinducers. When an autoinducer reaches a critical threshold, the bacteria detect and respond to this signal by altering their gene expression. In our circuit, QS (from Vibrio fischeri) is installed as a positive feedback while aiiA (from Bacillus Thurigensis) acts as a negative one to compose an oscillator together. In the quorum sensing part, the luxl gene is at low expression level and produces LuxI protein that synthesize a kind of acyl-homoserine lactone (AHL), which is a small molecule that can diffuse across the cell membrane and mediate intercellular coupling when it reaches the threshold as enough biomass accumulated. AHL will bind intracellular protein LuxR, which is also consecutively produced by luxR gene. The LuxR-AHL complex can activate the luxl promoter, and the positive feedback loop is built. At the same time, the aiia gene, which is under control of the same promoter is expressed and produce a lactonase enzyme known as AiiA that hydrolyzes the lactone ring of AHL. (Fig. 1) In this system, the activator enhances the expression of both activator and repressor, which shares the common motif of many synthetic oscillators.

Introduction

aaa
aaa

In a synchronized oscillatory system, three important parts should be included: the oscillator, which is the biochemical machinery that generate the oscillatory output; the coupling pathway that ensure the connection among cells; and output pathway, which is also known as a reporter that reflect the state of the oscillator to downstream targets.

XMU-iGEM 2013

Biome

First

By constructing robust circuits in E.coli, we want to build a gene network capable of synchronizing genetic oscillations in multiple levels. Cells can be synchronized at the colony level via quorum sensing, and a gas-phase redox will be signaling (mainly H2O2) between colonies simultaneously. Two scales of coupling ensured extremely consistent oscillations.

XMU-iGEM 2013

Biome

First

By constructing robust circuits in E.coli, we want to build a gene network capable of synchronizing genetic oscillations in multiple levels. Cells can be synchronized at the colony level via quorum sensing, and a gas-phase redox will be signaling (mainly H2O2) between colonies simultaneously. Two scales of coupling ensured extremely consistent oscillations.