Team:Peking/Project

From 2013.igem.org

(Difference between revisions)
Line 195: Line 195:
</li>
</li>
<li id="PKU_navbar_Team" class="Navbar_Item">
<li id="PKU_navbar_Team" class="Navbar_Item">
-
<a >Team</a>
+
<a href="">Team</a>
<ul id="Team_Sublist">
<ul id="Team_Sublist">
                                 <div class="BackgroundofSublist"></div>
                                 <div class="BackgroundofSublist"></div>
Line 211: Line 211:
<li><a href="https://2013.igem.org/Team:Peking/Project/Plugins">Adaptors</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/Plugins">Adaptors</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/BandpassFilter">Band-pass Filter</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/BandpassFilter">Band-pass Filter</a></li>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/Project/Devices">Devices</a></li>
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Model" class="Navbar_Item">
<li id="PKU_navbar_Model" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Model">Model</a>
+
<a href="">Model</a>
<ul id="Model_Sublist">
<ul id="Model_Sublist">
 +
                                <div class="BackgroundofSublist"></div>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/Model">Band-pass Filter</a></li>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/ModelforFinetuning">Biosensor Fine-tuning</a></li>
</ul>
</ul>
</li>
</li>
                         <li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:90px">
                         <li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:90px">
-
<a >Data page</a>
+
<a href="">Data page</a>
<ul id="DataPage_Sublist">
<ul id="DataPage_Sublist">
                                 <div class="BackgroundofSublist"></div>
                                 <div class="BackgroundofSublist"></div>
Line 236: Line 240:
<ul id="HumanPractice_Sublist">
<ul id="HumanPractice_Sublist">
                                 <div class="BackgroundofSublist"></div>
                                 <div class="BackgroundofSublist"></div>
-
                                 <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/Questionnaire">Questionnaire</a></li>
+
                                 <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/Questionnaire">Questionnaire Survey</a></li>
-
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/FactoryVisit">Factory Visit</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/FactoryVisit">Visit and Interview</a></li>
                                 <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/ModeliGEM">Practical Analysis</a></li>
                                 <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/ModeliGEM">Practical Analysis</a></li>
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/iGEMWorkshop">Team Communication</a></li>
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/iGEMWorkshop">Team Communication</a></li>

Revision as of 14:41, 27 October 2013

Project Overview

Aromatic pollutants are becoming a worldwide concern. Monitoring aromatics in the environment, however, remains a substantial challenge today. Noting the power of biosensors for quick and convenient testing, Peking iGEM has developed a comprehensive biosensors toolkit to detect aromatics in the environment.

Transcriptional regulators sensing each general class of aromatic compounds were first bioinformatically determined using the genomic data from prokaryotes, and then utilized to build biosensor circuits in living cells. Genetic tailoring such as promoter engineering was performed to tune their properties functionally. Most of these novel biosensors proved to be capable of faithfully sensing a specific group of aromatics. Furthermore, the synergistic/antagonistic effects between their inducers was carefully examined; this allowed the combination of these biosensors to profile aromatics for the ease of practical applications.

In order to expand the detection profiles of some biosensors, aromatics-metabolizing enzymes were gleaned from natural metabolic pathways, working as Adaptors to convert undetectable chemicals into detectable aromatics when coupled with biosensor circuits. Additionally, for the ease of practical analysis, we have constructed a genetic device called the "Band-pass Filter" to allow the detection of analyte concentration within a specific range. Biosensors equipped with the Band-pass Filter are able to robustly quantify the aromatics in environmental samples.

In conclusion, Peking iGEM has significantly enriched the repertoire of biosensors for aromatic compounds. These novel biosensors, together with the Adaptors and the Band-pass Filter, will serve as intriguing synthetic biological tools for diverse practical applications, including pollution monitoring, bioremediation, and metabolic process control.