Team:Peking/Team/Notebook/Protocols

From 2013.igem.org

(Difference between revisions)
 
(37 intermediate revisions not shown)
Line 16: Line 16:
#search-controls{display:none;}
#search-controls{display:none;}
#top{display:none;}
#top{display:none;}
-
.firstHeading{display:none;}
+
.firstHeading{display:none;}  
/* end of hiding the top section*/
/* end of hiding the top section*/
Line 139: Line 139:
.Navbar_Item > ul > li {float:left; list-style:none; text-align:center; background-color:transparent; position:relative; top:10px; padding:0 10px;}
.Navbar_Item > ul > li {float:left; list-style:none; text-align:center; background-color:transparent; position:relative; top:10px; padding:0 10px;}
.Navbar_Item:hover{ border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
.Navbar_Item:hover{ border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
-
.Navbar_Item:hover > ul{ display:block;}
+
.Navbar_Item:hover > ul{zoom:1; display:block;}
.Navbar_Item:hover >a {color:#D00000; background-color:#fafaf8;}
.Navbar_Item:hover >a {color:#D00000; background-color:#fafaf8;}
.Navbar_Item > ul > li:hover {border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
.Navbar_Item > ul > li:hover {border-bottom:1px solid #D00000; color:#D00000; background-color:#fafaf8;}
.Navbar_Item > ul > li:hover >a {color:#D00000}
.Navbar_Item > ul > li:hover >a {color:#D00000}
 +
.BackgroundofSublist{position:absolute; left:-1000px; width:2000px; height:80px; background-color:#ffffff; opacity:0;}
#Home_Sublist{position:relative; top:0px; left:-50px;}
#Home_Sublist{position:relative; top:0px; left:-50px;}
-
#Team_Sublist{position:relative; top:0px; left:-90px;}
+
#Team_Sublist{position:relative; top:0px; left:-110px;}
-
#Project_Sublist{position:relative; top:0px; left:-200px;}
+
#Project_Sublist{position:relative; top:0px; left:-180px;}
#Model_Sublist{position:relative; top:0px; left:-140px;}
#Model_Sublist{position:relative; top:0px; left:-140px;}
#DataPage_Sublist{position:relative; top:0px; left:-60px;}
#DataPage_Sublist{position:relative; top:0px; left:-60px;}
#Safety_Sublist{position:relative; top:0px; left:-180px;}
#Safety_Sublist{position:relative; top:0px; left:-180px;}
-
#HumanPractice_Sublist{position:relative; top:0px; left:-320px;}
+
#HumanPractice_Sublist{position:relative; top:0px; left:-470px;}
#iGEM_logo{position:absolute; top:30px; left:1090px; height:80px;}
#iGEM_logo{position:absolute; top:30px; left:1090px; height:80px;}
Line 160: Line 161:
#ProjectTitle{position:absolute; left:200px; background-color:#ea5930; width:1000px; height:210px; top:150px; z-index:600;}
#ProjectTitle{position:absolute; left:200px; background-color:#ea5930; width:1000px; height:210px; top:150px; z-index:600;}
#ProjectName{text-align:center; position:absolute; width:1000px; left:0px; top:50px; border-bottom:0px; color:#FFFFFF; font-size:45px; font-family:calibri,Arial, Helvetica, sans-serif;}
#ProjectName{text-align:center; position:absolute; width:1000px; left:0px; top:50px; border-bottom:0px; color:#FFFFFF; font-size:45px; font-family:calibri,Arial, Helvetica, sans-serif;}
-
#ProjectSubname{text-align:center; position:absolute; width:1000px; left:0px; top:110px; border-bottom:0px; color:#FFFFFF; font-size:24px;  font-family:calibri, Arial, Helvetica, sans-serif;}
+
#ProjectSubname{text-align:center; position:absolute; width:1000px; left:0px; top:110px; border-bottom:0px; color:#FFFFFF; font-size:19px;  font-family:calibri, Arial, Helvetica, sans-serif;}
#LeftNavigation{position:fixed; top:130px; float:left; width:200px; height:100%; background-color:#313131; z-index:900;}
#LeftNavigation{position:fixed; top:130px; float:left; width:200px; height:100%; background-color:#313131; z-index:900;}
-
#AttributionListTitle{position:absolute; top:50px; left:20px; color:#ffffff; font-size:30px; font-family: calibri, arial, helvetica, sans-serif; text-decoration:none; border-bottom:0px;}
+
#NotebookListTitle{position:absolute; top:50px; left:20px; color:#ffffff; font-size:30px; font-family: calibri, arial, helvetica, sans-serif; text-decoration:none; border-bottom:0px;}
-
#AttributionListTitle a {color:#ffffff; text-decoration:none;}
+
#NotebookListTitle a {color:#ffffff; text-decoration:none;}
-
#AttributionList{position:absolute; top:130px; left:0px; color:#ffffff; font-family: calibri, arial, helvetica, sans-serif;}
+
#NotebookList{position:absolute; top:130px; left:0px; color:#ffffff; font-family: calibri, arial, helvetica, sans-serif;}
-
#AttributionList > li {display:block; list-style-type:none; width:180px; height:25px; font-size:18px; text-align:left; background-color:transparent;}
+
#NotebookList > li {display:block; list-style-type:none; width:180px; height:25px; font-size:18px; text-align:left; background-color:transparent;}
-
#AttributionList a {color:#ffffff; text-decoration:none;}
+
#NotebookList a {color:#ffffff; text-decoration:none;}
#MileStone1{position:absolute; top:300px;}
#MileStone1{position:absolute; top:300px;}
#MileStone2{position:absolute; top:1400px;}
#MileStone2{position:absolute; top:1400px;}
Line 173: Line 174:
-
#SensorEditingArea{position:absolute; left:200px; top:360px; height:3000px; width:1000px; background-color:#ffffff;}
+
#SensorEditingArea{position:absolute; left:200px; top:360px; height:2500px; width:1000px; background-color:#ffffff;}
Line 185: Line 186:
-
#PageTitle{text-align:center; position:relative left:0px; width:1000px; border-bottom:0px ; color:#535353; font-weight:bold ;font-size:35px;font-family:calibri,arial,helvetica,sans-serif;}
+
#PageTitle{text-align:center; position:relative; left:0px; width:1000px; border-bottom:0px ; color:#535353; font-weight:bold ;font-size:35px;font-family:calibri,arial,helvetica,sans-serif;}
-
#PageSubTitle1{text-align:center; position:relative ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#e98d70; height:40px;width:400px ;line-height:40px;}
+
#PageSubTitle1{text-align:center; position:relative ; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#e98d70; height:50px;width:400px ;line-height:40px; padding:0 20px;}
-
#PageSubTitle2{text-align:center; position:relative; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#e98d70; height:40px;width:400px;line-height:40px; }
+
#PageSubTitle2{text-align:center; position:relative; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#e98d70; height:50px;width:400px;line-height:40px; padding:0 20px;}
-
#PageSubTitle3{text-align:center; position:relative; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#e98d70; height:40px;width:400px;line-height:40px; }
+
#PageSubTitle3{text-align:center; position:relative; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#e98d70; height:50px;width:400px;line-height:40px; padding:0 20px; }
-
#PageSubTitle4{text-align:center; position:relative; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#e98d70; height:40px;width:400px;line-height:40px; }
+
#PageSubTitle4{text-align:center; position:relative; left:80px;border-bottom:0px ; color:#ffffff; font-weight:bold ;font-style:Italic;font-size:24px;font-family:calibri,arial,helvetica,sans-serif;background-color:#e98d70; height:40px;width:400px;line-height:50px; padding:0 20px;}
Line 224: Line 225:
<ul id="navigationbar">
<ul id="navigationbar">
<li id="PKU_navbar_Home" class="Navbar_Item">
<li id="PKU_navbar_Home" class="Navbar_Item">
 +
                       
<a href="https://2013.igem.org/Team:Peking">Home</a>
<a href="https://2013.igem.org/Team:Peking">Home</a>
<ul id="Home_Sublist" >
<ul id="Home_Sublist" >
Line 229: Line 231:
</li>
</li>
<li id="PKU_navbar_Team" class="Navbar_Item">
<li id="PKU_navbar_Team" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Team">Team</a>
+
<a href="">Team</a>
<ul id="Team_Sublist">
<ul id="Team_Sublist">
 +
                                <div class="BackgroundofSublist"></div>
<li><a href="https://2013.igem.org/Team:Peking/Team/Members">Members</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Team/Members">Members</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Team/Notebook">Notebook</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Team/Notebook">Notebook</a></li>
Line 239: Line 242:
<a href="https://2013.igem.org/Team:Peking/Project">Project</a>
<a href="https://2013.igem.org/Team:Peking/Project">Project</a>
<ul id="Project_Sublist">
<ul id="Project_Sublist">
-
                                 <li><a href="https://2013.igem.org/Team:Peking/Project/AutoSensorMining">Auto Sensor Mining</a></li>
+
                                <div class="BackgroundofSublist"></div>
 +
                                 <li><a href="https://2013.igem.org/Team:Peking/Project/SensorMining">Biosensor Mining</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors">Biosensors</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/BioSensors">Biosensors</a></li>
-
<li><a href="https://2013.igem.org/Team:Peking/Project/Plugins">Plug-ins</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/Project/Plugins">Adaptors</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/BandpassFilter">Band-pass Filter</a></li>
<li><a href="https://2013.igem.org/Team:Peking/Project/BandpassFilter">Band-pass Filter</a></li>
-
                                 <li><a href="https://2013.igem.org/Team:Peking/Project/Application">Application</a></li>
+
                                 <li><a href="https://2013.igem.org/Team:Peking/Project/Devices">Devices</a></li>
</ul>
</ul>
</li>
</li>
<li id="PKU_navbar_Model" class="Navbar_Item">
<li id="PKU_navbar_Model" class="Navbar_Item">
-
<a href="https://2013.igem.org/Team:Peking/Model">Model</a>
+
<a href="">Model</a>
<ul id="Model_Sublist">
<ul id="Model_Sublist">
 +
                                <div class="BackgroundofSublist"></div>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/Model">Band-pass Filter</a></li>
 +
                                <li><a href="https://2013.igem.org/Team:Peking/ModelforFinetuning">Biosensor Fine-tuning</a></li>
</ul>
</ul>
</li>
</li>
                         <li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:90px">
                         <li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:90px">
-
<a href="https://2013.igem.org/Team:Peking/HumanPractice">Data page</a>
+
<a href="">Data page</a>
-
<ul id="DataPage_Sublist">
+
<ul id="DataPage_Sublist">
 +
                                <div class="BackgroundofSublist"></div>
                                 <li><a href="https://2013.igem.org/Team:Peking/DataPage/Parts">Parts</a></li>
                                 <li><a href="https://2013.igem.org/Team:Peking/DataPage/Parts">Parts</a></li>
<li><a href="https://2013.igem.org/Team:Peking/DataPage/JudgingCriteria">Judging Criteria</a></li>
<li><a href="https://2013.igem.org/Team:Peking/DataPage/JudgingCriteria">Judging Criteria</a></li>
Line 266: Line 274:
<li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:120px">
<li id="PKU_navbar_HumanPractice" class="Navbar_Item" style="width:120px">
<a href="https://2013.igem.org/Team:Peking/HumanPractice">Human Practice</a>
<a href="https://2013.igem.org/Team:Peking/HumanPractice">Human Practice</a>
-
<ul id="HumanPractice_Sublist">
+
<ul id="HumanPractice_Sublist">
-
                                 <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/Questionnaire">Questionnaire</a></li>
+
                                <div class="BackgroundofSublist"></div>
-
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/FactoryVisit">Factory Visit</a></li>
+
                                 <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/Questionnaire">Questionnaire Survey</a></li>
-
                                 <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/iGEMWorkshop">iGEM Workshop</a></li>
+
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/FactoryVisit">Visit and Interview</a></li>
-
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/ModeliGEM">Model iGEM</a></li>
+
                                 <li><a href="https://2013.igem.org/Team:Peking/HumanPractice/ModeliGEM">Practical Analysis</a></li>
 +
<li><a href="https://2013.igem.org/Team:Peking/HumanPractice/iGEMWorkshop">Team Communication</a></li>
 +
 
</ul>
</ul>
</li>
</li>
</ul>
</ul>
-
         <a href="https://igem.org/Team_Wikis?year=2013"><img id="iGEM_logo" src="https://static.igem.org/mediawiki/igem.org/4/48/Peking_igemlogo.jpg"/></a>
+
         <a href="https://2013.igem.org/Main_Page"><img id="iGEM_logo" src="https://static.igem.org/mediawiki/igem.org/4/48/Peking_igemlogo.jpg"/></a>
</div>
</div>
<!--end navigationbar-->
<!--end navigationbar-->
Line 281: Line 291:
<div id="MajorBody">   
<div id="MajorBody">   
<div id="ProjectTitle">
<div id="ProjectTitle">
-
<h1 id="ProjectName">Attributions</h1>
+
<h1 id="ProjectName">Notebook</h1>
-
                 <h1 id="ProjectSubname">We Want to Say Thank You! </h1>
+
                 <h1 id="ProjectSubname">Our story in that summmer </h1>
                 <img src="https://static.igem.org/mediawiki/2013/f/f7/Peking2013_Attribution_title_ZYH.jpg"/>
                 <img src="https://static.igem.org/mediawiki/2013/f/f7/Peking2013_Attribution_title_ZYH.jpg"/>
</div>
</div>
          
          
         <div id="LeftNavigation">
         <div id="LeftNavigation">
-
                 <h1 id="AttributionListTitle">Attributions</h1>
+
                 <h1 id="NotebookListTitle">Notebook</h1>
-
                 <ul id="AttributionList">
+
                 <ul id="NotebookList">
-
                     <li><a href="#MileStone1">Members' attributions</a><li>
+
                     <li><a href="https://2013.igem.org/Team:Peking/Team/Notebook#MileStone1">Diary and Protocols</a><li>
-
                     <li><a href="#MileStone2">Acknowledgement</a><li>
+
                     <li><a href="https://2013.igem.org/Team:Peking/Team/Notebook/Protocols">Protocols for Test</a><li>
                 </ul>
                 </ul>
          
          
Line 303: Line 313:
-
             <h1 id="PageTitle"></h1>
+
             <h1 id="PageTitle"><br/><br/>Protocols for Test<br/><br/></h1>
              
              
            
            
Line 315: Line 325:
<p id="Content1">
<p id="Content1">
-
E. coli Top10 was used for all the experiments and grown in Luria–Bertani (LB) medium or M9 minimal medium using glycerin as carbon source. Kanamycin (10 μg/mL), ampicillin (50 μg/mL) and chloramphenicol (170μg/mL) were added as appropriate
+
<I>E.coli Top10</I> was used for all the experiments and grown in Luria–Bertani (LB) medium or M9 minimal medium using glycerol as the carbon source. Kanamycin (10 μg/mL), ampicillin (50 μg/mL) and chloramphenicol (170 μg/mL) were added as appropriate.
</br></br></br>
</br></br></br>
</p>
</p>
-
  <h id="PageSubTitle2">  Five Kinds of Protocols  </h>
+
  <h id="PageSubTitle2">  Six Kinds of Protocols  </h>
Line 325: Line 335:
<B>Protocol 1</B></br>
<B>Protocol 1</B></br>
-
E. coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). Then each culture (200 μL) was induced for 12 hours at 30°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
+
<I>E.coli</I> was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). Then each culture (200 μL) was induced for 12 hours at 30°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
</br></br>
</br></br>
<B>Protocol 2</B> </br>
<B>Protocol 2</B> </br>
-
E. coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). After 3 hours’ culture at 30 °C, each culture (200 μL) was induced for 7 hours with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
+
<I>E.coli</I> was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). After 3 hours’ culture at 30 °C, each culture (200 μL) was induced for 7 hours with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
</br></br>
</br></br>
<B>Protocol 3</B></br>
<B>Protocol 3</B></br>
-
E. coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). After 6 hours’ culture at 30 °C, each culture (200 μL) was centrifuged at 4000 r.p.m. for 10 minutes and was suspended in 200 μL of fresh LB medium containing inducers of different concentrations for 4 hours. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
+
<I>E.coli</I> was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). After 6 hours’ culture at 30 °C, each culture (200 μL) was centrifuged at 4000 r.p.m. for 10 minutes and was suspended in 200 μL of fresh LB medium containing inducers of different concentrations for 4 hours. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
</br></br>
</br></br>
<B>Protocol 4</B></br>
<B>Protocol 4</B></br>
-
E. coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). Then each culture (200 μL) was induced for 12 hours at 37°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
+
<I>E.coli</I> was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). Then each culture (200 μL) was induced for 12 hours at 37°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
</br></br>
</br></br>
<B>Protocol 5</B></br>
<B>Protocol 5</B></br>
-
E. coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh M9 minimal medium in 96-well plates (Corning Incorporated, 3599). Then each culture (200 μL) was induced for 12 hours at 30°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
+
<I>E.coli</I> was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh M9 minimal medium in 96-well plates (Corning Incorporated, 3599). Then each culture (200 μL) was induced for 12 hours at 30°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
 +
</br></br>
 +
<B>Protocol 6</B></br>
 +
<I>E.coli</I> was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh M9 minimal medium in microcentrifuge tubes (1.5 mL, Axygen). Then each culture (200 μL) was induced for 12 hours at 30°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).
</br></br></br>
</br></br></br>
</p>
</p>
Line 344: Line 357:
<p id="Content3">
<p id="Content3">
-
The kind and concentration of aromatic compounds are different in these four types of test.</br>
+
<B>Primary Test</B></br>
-
<B>Primary test</B></br>
+
Primary Test aims to investigate whether a particular biosensor could be induced by the aromatic compounds mentioned in previous studies.</br>
-
Primary test is aims to reveal whether a certain biosensor can be induced by the compounds mentioned in previous research papers.</br>
+
Inducers (summarized from previous studies) were added into the LB medium at 1000 μM (for the non-cytotoxic compounds) or 100 μM (for the cytotoxic compounds).
-
Inducers (found in previous research papers) were added into the LB medium at 1000 μM (for nontoxic compounds) or 100 μM (for toxic compounds).
+
</br></br>
</br></br>
-
<B>ON-OFF test</B></br>
+
<B>ON-OFF Test</B></br>
-
ON-OFF test functions to land aromatic compounds that can induce a certain biosensor.</br>
+
ON-OFF Test functions to determine aromatic compounds that can induce a certain biosensor.</br>
-
78 kinds of aromatic compounds were added into the LB medium at 1000 μM (for nontoxic compounds), 100 μM (for toxic compounds) or 10μM (for benzene).
+
78 aromatic compounds were individually added into the LB medium at 1000 μM (for the non-cytotoxic compounds), 100 μM (for the cytotoxic compounds) or 10μM (for benzene). (For detail of all the compounds, <B><a href="https://static.igem.org/mediawiki/igem.org/2/24/Peking2013_Chemicals_V3%2B.pdf" style="color:#e98d70;">Click Here</a></B>).
</br></br>
</br></br>
-
<B>Dose-response Curve test</B></br>
+
<B>Dose-response Curve Test</B></br>
-
Dose-response Curve test is to deeply characterize the relationship between fluorescence intensity (or induction ratio) and the concentration of inducers.</br>
+
Dose-response Curve Test is to deeply characterize the relationship between fluorescence intensity (or induction ratio) and the concentration of inducers.</br>
-
Inducers found in previous on-off test were added respectively into the LB medium at concentration ranging from micro-molar to mili-molar.
+
Inducers summarized from ON-OFF Test were individually added into the LB medium at concentration ranging from micro-molar to mili-molar.  
</br></br>
</br></br>
-
<B>Orthogonality test</B></br>
+
<B>Orthogonality Test</B></br>
-
Orthogonality test is to prove that a compound which is not an inducer will not influence the detection of inducers.</br>
+
Orthogonality Test aims to prove that a compound which is not an inducer will not influence the detection of inducers.</br>
-
Two kinds of aromatic compounds (one is an inducer while the other isn’t) were added together into the LB medium at concentration ranging from micro-molar to mili-molar.
+
Two kinds of aromatic compounds (one is an inducer while the other isn’t for a particular biosensor) were added together into the LB medium at concentration ranging from micro-molar to mili-molar.
</br></br></br>
</br></br></br>
Line 367: Line 379:
<p id="Content4">
<p id="Content4">
-
<B>Microplate reader analysis</B></br>
+
<B>Microplate Reader</B></br>
-
E.coli were harvested by centrifugation at 4000 r.p.m. for 10 minutes and were suspended in 200 μl of PBS (phosphate-buffered saline). OD600 and GFPuv fluorescence (excitation 485 nm and emission 515 nm) was measured by microplate reader (Thermo). </br>
+
<I>E.coli</I> were harvested by centrifugation at 4000 r.p.m. for 10 minutes and then resuspended in 200 μl of PBS (phosphate-buffered saline). OD600 and GFPuv fluorescence (excitation 485 nm and emission 515 nm) was measured using microplate reader (Thermo). </br>
-
As for data analysis, OD 600 and fluorescence intensity of PBS measured the same way was subtracted as blank. Net fluorescence intensity of each well was normalized by OD600 of the same well to measure the expression level of GFP. The averages of net fluorescence intensity were obtained from three replicates performed on different 96-well plates.
+
As for the data analysis, OD600 and fluorescence intensity of PBS measured in the same way was subtracted as blank. Fluorescence intensity of each well was normalized by OD600 of the same well. The average of fluorescence intensity was obtained from three replicates performed on different 96-well plates.
</br></br>
</br></br>
<B>Flow cytometry analysis</B></br>
<B>Flow cytometry analysis</B></br>
-
Flow cytometer data were obtained using an LSRFortessa flow cytometer (BD Biosciences). All the data were gated by forward and side scatter, and each data consists of at least 10,000 cells. The geometry mean fluorescence was calculated with FlowJo. The averages of means were obtained from three replicates performed on different 96-well plates.
+
Flow cytometer data were obtained using an LSRFortessa flow cytometer (BD Biosciences). All the data were gated by forward and side scatter, and each data consists of at least 10,000 cells. The geometry mean fluorescence was calculated with FlowJo. The average of means was obtained from three replicates performed on different 96-well plates.
</br></br>
</br></br>
</p>
</p>

Latest revision as of 18:11, 28 October 2013

Notebook

Our story in that summmer



Protocols for Test

Strains and Growth Media

E.coli Top10 was used for all the experiments and grown in Luria–Bertani (LB) medium or M9 minimal medium using glycerol as the carbon source. Kanamycin (10 μg/mL), ampicillin (50 μg/mL) and chloramphenicol (170 μg/mL) were added as appropriate.


Six Kinds of Protocols

Protocol 1
E.coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). Then each culture (200 μL) was induced for 12 hours at 30°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).

Protocol 2
E.coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). After 3 hours’ culture at 30 °C, each culture (200 μL) was induced for 7 hours with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).

Protocol 3
E.coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). After 6 hours’ culture at 30 °C, each culture (200 μL) was centrifuged at 4000 r.p.m. for 10 minutes and was suspended in 200 μL of fresh LB medium containing inducers of different concentrations for 4 hours. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).

Protocol 4
E.coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh LB medium in 96-well plates (Corning Incorporated, 3599). Then each culture (200 μL) was induced for 12 hours at 37°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).

Protocol 5
E.coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh M9 minimal medium in 96-well plates (Corning Incorporated, 3599). Then each culture (200 μL) was induced for 12 hours at 30°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).

Protocol 6
E.coli was grown overnight in LB medium at 37 °C and then diluted 100-fold in fresh M9 minimal medium in microcentrifuge tubes (1.5 mL, Axygen). Then each culture (200 μL) was induced for 12 hours at 30°C with inducers of different concentrations. Then the fluorescence intensity of cultures was measured by microplate reader (Thermo) or LSRFortessa flow cytometer (BD Biosciences).


Four Types of Test

Primary Test
Primary Test aims to investigate whether a particular biosensor could be induced by the aromatic compounds mentioned in previous studies.
Inducers (summarized from previous studies) were added into the LB medium at 1000 μM (for the non-cytotoxic compounds) or 100 μM (for the cytotoxic compounds).

ON-OFF Test
ON-OFF Test functions to determine aromatic compounds that can induce a certain biosensor.
78 aromatic compounds were individually added into the LB medium at 1000 μM (for the non-cytotoxic compounds), 100 μM (for the cytotoxic compounds) or 10μM (for benzene). (For detail of all the compounds, Click Here).

Dose-response Curve Test
Dose-response Curve Test is to deeply characterize the relationship between fluorescence intensity (or induction ratio) and the concentration of inducers.
Inducers summarized from ON-OFF Test were individually added into the LB medium at concentration ranging from micro-molar to mili-molar.

Orthogonality Test
Orthogonality Test aims to prove that a compound which is not an inducer will not influence the detection of inducers.
Two kinds of aromatic compounds (one is an inducer while the other isn’t for a particular biosensor) were added together into the LB medium at concentration ranging from micro-molar to mili-molar.


Two Methods for Fluorescence Intensity Measurement and Data Analysis

Microplate Reader
E.coli were harvested by centrifugation at 4000 r.p.m. for 10 minutes and then resuspended in 200 μl of PBS (phosphate-buffered saline). OD600 and GFPuv fluorescence (excitation 485 nm and emission 515 nm) was measured using microplate reader (Thermo).
As for the data analysis, OD600 and fluorescence intensity of PBS measured in the same way was subtracted as blank. Fluorescence intensity of each well was normalized by OD600 of the same well. The average of fluorescence intensity was obtained from three replicates performed on different 96-well plates.

Flow cytometry analysis
Flow cytometer data were obtained using an LSRFortessa flow cytometer (BD Biosciences). All the data were gated by forward and side scatter, and each data consists of at least 10,000 cells. The geometry mean fluorescence was calculated with FlowJo. The average of means was obtained from three replicates performed on different 96-well plates.