Team:Peking/Project/BioSensors/HcaR

From 2013.igem.org

(Difference between revisions)
(Created page with "<html> <style type="text/css"> - hiding the top section: body{position:absolute; top:0px; width:100%; height:1480px;} #top-section{ height:0px; border:none; width:98...")
Line 319: Line 319:
-
<p id="ContentXylR1">
+
<p id="ContentHcaR1">
-
XylR is an intensively studied regulatory protein originated from Pseudomonas putida<sup>[1]</sup>, with numerous researches about it published prior to our project. XylR mainly responds to toluene, xylene,  
+
Escherichia coli play an essential role in the circulation of materials in the nature, especially for aromatic compounds. The gene clusters related to the aromatic compounds mainly include hca (for 3-phenylpropionic acid and cinnamic acid), mhp (for 3-hydroxyphenylpropionate and phenylpropionate), paa (for phenylacetic acid) and hpa (for 4-hydroxyphenylacetic acid). All of them have the regulators to control the expression of corresponding genes, according to which we could design biosensors detecting aromatic compounds.
-
4-chlro-toluene, while responds weakly to 3-methyl benzyl alcohol<sup>[1]</sup>. These responses to aromatic compounds bring about the necessity to study its functioning mechanism.
+
<br/><br/>
 +
HcaR is a 32,838 Da (296 amino acids) protein, which belongs to LysR family. Its’ N-terminal domain functions in DNA binding via a helix-turn-helix motif, while C-terminal domain functions in multimerization. As an activator, HcaR activates the expression of hca cluster at the presence of ligands. It detects limited range of ligands, including 3-phenylpropionic acid (PPA) and cinnamic acid (CnA) [1]
 +
<br/><br/>
 +
MhpR is a 31,767 Da (281 amino acids) protein. It belongs to IclR family, which forms helix-turn-helix motif at N-terminal. MhpR behaves as an activator to initiate the expression of mhp cluster when contacts with its ligands, 3-hydroxyphenylpropionate (3-HPPA), 3-hydoxycinnamate (3-HCnA) and 3-(2, 3-dihydroxyphenyl) propionic acid (2,3-DHPPA). [2]
 +
<br/><br/>
 +
hca and mhp clusters are involved in the catabolism of PPA and CnA in E. coli (Fig. 1). The enzymes encoded by hca cluster degrade PPA and CnA to 2,3-DHPPA and 2,3-DHCnA respectively, which serve as the substrates of the mhp cluster. The enzymes in mhp cluster function in the cleavage of aromatic ring.
 +
 
</p>
</p>
-
<p id="ContentXylR2">
+
<p id="ContentHcaR2">
-
XylR activates the Pu promoter and opens TOL upper pathway when exposed to m-xylene. XylR also activates another transcriptional factor called XylS, which controls the downstream pathway<sup>[1][2]</sup>.(<B>Fig. 1,2</B>)
+
Compared with the sole 2,3-DHPPA, the special induction effect of PPA and 2,3-DHPPA is obtained, although PPA don’t behave as ligand alone. Based on the result and the observation of different binding site of PPA with MhpR, it is deduced that PPA and 2,3-DHPPA have synergistic effect to the activation of MhpR expression [3]. (That is to say, PPA enhances the activation effect as a cooperator of 2,3-DHPPA instead of a ligand.) The same effect is observed in 3-HPPA along with PPA.
-
<br/> <br/>  
+
<br/><br/>
-
This process is also controlled by several global regulatory elements, and the difference of global regulatory elements may provide an explanation to different performance in different genetic context<sup>[3]</sup>.
+
The synergistic effect seems to be explained by pre-activation mechanism. It is that 2,3-DHPPA is a product of PPA degradation by hca cluster, and it will accumulate before activating the expression of the downstream mhp cluster. 2,3-DHPPA has cytotoxicity to the bacteria. The pre-activation mechanism activates the downstream cluster at low ligand concentration so that bacteria consume it to prevent accumulation of toxicity. The mechanism reflects the precise control across several pathways in bacteria, and also contributes to the sensor application [3].
 +
 
 +
 
 +
<p id="ContentHcaR3">
 +
Based on the information, our team constructed the Ph/HcaR expression system. The coding sequence of HcaR was obtained from the genome of E. coli K12 via PCR. Constitutive Pc promoters are used to initiate the expression of hcaR on pSB4K5, and sfGFP, as a reporter gene, is under the control of Ph, the cognate promoter of HcaR.
 +
<br/><br/>
 +
We also created a Pc library to obtain the optical performance of this expression system which gets the best induction ratio. The library consists of a series of Pc promoters with different expression intensity, including BBa_J23113, J23109, J23114 and J23106. Primary test following protocol 1 showed that HcaR performed best under the control of BBa_J23106. Then the best performed expression system is subjected to the On-Off test about 78 aromatics according to protocol 1. Results showed that HcaR worked as a specific sensor to PPA (Fig. 2).
-
<p id="ContentXylR3">
 
-
The XylR protein consists of FOUR domains:
 
-
</br>
 
-
A Domain is the sensor domain, which will change its secondary structure upon binding of proper ligands. Previous researches showed that A domain inhibits C domain’s DNA binding activity before the conformational change<sup>[4][5]</sup>.
 
-
</br>
 
-
B Domain is a linker; mutations of this domain change the interaction between domain A and C through changing the spatial position of two domains<sup>[6]</sup>.(<B>Fig. 3</B>)
 
-
</br>
 
-
C Domain is the effector domain that has ATPase activity. A subdomain in domain C is assumed to have the ability of dimerization. The ATPase activity is crucial for its dimerization.
 
-
</br>
 
-
D Domain is DNA binding domain with helix-turn-helix motif, which is capable of binding specific DNA sequence.
 
</p>
</p>
-
<p id="ContentXylR4">
+
<p id="ContentHpaR1">
-
XylR is capable of forming tetramer with ATP’s binding<sup>[7]</sup>. This procedure is significant because the XylR may only bind to DNA after forming a dimer. A σ54-dependent transcriptional factor typically has two binding site, and the binding of XylR is cooperative, which means binding of the first protein will facilitate the binding of the other transcriptional factor(TF) as well as its dimerization with the first TF. After dimerization, two dimers of one promoter may form a tetramer to bend the promoter region DNA with the help of integrated host factor (IHF). After DNA binding, transcription will be launched by the interaction between the XylR tetramer and RNA Polymerase (RNAP). ATP hydrolysis will provide energy for this process. After ATP has been hydrolyzed to ADP, XylR tetramer will break apart from RNA polymerase, waiting for other RNAP and ATP’s interaction to start transcription again<sup>[8]</sup>.  
+
HpaR is of 17,235 Da (149 amino acid) that belongs to MarR family [4]. It performs as a repressor of the hpa cluster consisting of hpaGEDFHI genes (Fig. 4), which participates in the catabolic pathway of 4-hydroxyphenylacetic acid (4HPAA) (Fig. 3). HpaR derepress the downstream genes when contacting with ligands, including 4HPAA, 3-hydroxyphenylacetic acid (3HPAA) and 3, 4-dihydroxyphenylacetic acid (3,4-DHPAA).  
 +
<br/><br/>
 +
hpa cluster consists of three operons. The regulator gene, hpaR, is transcribed in the divert direction to other genes under PR promoter. The adjacent promoter, PG, initiates the transcription of the functional hpaGEDFHI operon. PR and PG are both regulated by HpaR and located in the intergenic region between the hpaR and hpaG (Fig. 4). There are two HpaR binding sites, OPR1 and OPR2, belonging to PR and PG respectively. Each binding site contains palindrome sequence
</p>
</p>
-
<p id="ContentXylR5">
+
<p id="ContentHpaR2">
-
A random mutation of XylR B domain has been selected by previous work<sup>[9]</sup>. This result suggested that mutations in several specific sites may cause XylR to respond to 2.4-DNT. The XylR28 referred in this paper which carries 4 point mutations in A and B domains, has a remarkably improved performance responding to 2.4-DNT and TNT, while reduced response to its natural inducer m-xylene, indicating directed evolution may engender possibility for XylR to respond to compounds that it doesn't naturally sense<sup>[6]</sup>.<br/> <br/>  
+
which contacts with HpaR dimer in absence of ligand, inhibiting the transcription initiation. OPR1 is centered in the +2 site of PG. OPR2, however, is centered in the +40 site downstream of PR. It is hypothesized that HpaR binding to OPR1 inhibits the formation of open complex while binding to OPR2 blocks the elongation step (Fig. 5).  
-
Apart from the point mutation, another protein engineering method is called 'shuffling', which means the hybrid of homologous proteins or protein domains. Proteins of the same family may have similar functions and structures, and the specific active sites for recognizing natural inducers may distribute in different subdomains. If the proteins of the same family exchange some subdomain, the result, hybrid protein, may have the capacity of recognizing inducers including a proportion of both the original inducers of the two original transcriptional factors, or furthermore, new inducers with new detection range. Previous studies showed that the shuffling product between XylR and its homolog DmpR has a higher induction ratio for the original protein's natural inducers and starts to response to several new inducers, for example, 2,4-DNT<sup>[10][11]</sup>. <br/> <br/>
+
<br/><br/>
-
To extend detection range and improve performance, promoter engineering is considered to be a more reliable alternative to protein engineering. A XylR-conrolled Pu promoter has a high basal level because the ATP binding doesn't coupled to this transcription activation. But its homolog, DmpR, has a fairly low basal level. For the similarity of XylR and DmpR, XylR can activate the Po promoter for DmpR. Based on this crosstalk phenomenon, a promoter engineering is possible. They designed a hybrid promoter of Po promoter’s basal structure and XylR’s binding site from Pu promoter. This design ensured that the hybrid promoter’s basal level is low and XylR binding affinity is high<sup>[12]</sup>.  
+
Interestingly, based on the gel retardation assays, most of the HpaR dimer still contact with the OPR1 in the presence of the ligand, which recruits the RNAP and form open-complex. In this way, HpaR can be regarded as an activator.  
 +
 
</p>
</p>
-
<p id="ContentXylR6">
+
<p id="ContentHpaR3">
-
Our team obtained XylR from the TOL plasmid of Pseudomonas putida mt-2 through Polymerase Chain Reaction (PCR) (the strain is from Prof. de Lorenzo’s generous material assistance). We also obtained from Prof. de Lorenzo XylR5 protein coding sequence (on pCON924), which performs well in the original paper<sup>[11][13]</sup>. We standardized these regulators' coding sequences, and attached a variety of Pc promoters (iGEM part, J23100 Pc series) in front of these coding sequences to create a library in order to obtain best performance.
+
The two binding site, OPR1 and OPR2, perform obvious synergistic effect, i.e., binding with PG obviously improve the affinity of HpaR to PR. It is hypothesized that HpaR dimer binding to one OPR get dimerized again and generates a repression loop, similar with the AraC and PBAD. Contact with ligand disrupts the dimerization of dimer and consequently initiates transcription of the hpaGEDFHI cluster. [4]
</p>
</p>
-
<p id="ContentXylR7">
+
<p id="ContentHpaR4">
 +
We obtained hpaR coding sequence via PCR and constructed Pg/HpaR expression system. Pc promoter J23106 is selected to initiate the transcription of hpaR. However, we haven`t got the obvious induction ratio. It is hypothesized that several overall-controlling sites are located in the promoter, i.e., IHF and CRP. The main function of the pathway is to use the complementary carbon source in the environment, so bacteria will control strictly the expression of the relative genes in rich condition.
 +
</p>
 +
 +
<p id="ContentPaaX1">
 +
PaaX is a repressor of 316-amino acid. As a member of GntR family, it contains a stretch of 25 residues that is similar with the helix-turn-helix motif functioning in DNA recognition and binding [6]. PaaX contacts with palindrome sequence located at its cognate promoter, Pa, inhibiting the promoter at the absence of the ligand. Unlike other sensors in E. coli, PaaX detects phenylacetic acid-CoA (PA-CoA), which is the first intermediate in the PA degradation pathway. The first step is catalyzed by PaaK [6], [7].
 +
<br/><br/>
 +
There are three operons in paa clusters, paaZ, paaABCDEFGHIJK and paaXY. (Fig. 6) The promoters regulated by PaaX, PZ and PA, are located at the intergenic region between paaZ and paaA. They possess a palindromic sequence respectively for binding to the repressor. (Fig. 7)
 +
</p>
 +
 +
<p id="ContentPaaX2">
 +
We standardized the PaaX genes and create Pa/PaaX expression system. We tuned the expression intensity of the repressor via selecting appropriate Pc promoter. Similar with HpaR, the expression of PA promoter is inhibited by the overall-controlling factor and we haven`t got the distinct induction effect. We would like to try more condition to improve the performance of the sensors.
 +
</p>
 +
<p id="ContentPaaX3">
 +
We standardized the PaaX genes and create Pa/PaaX expression system. We tuned the expression intensity of the repressor via selecting appropriate Pc promoter. Similar with HpaR, the expression of PA promoter is inhibited by the overall-controlling factor and we haven`t got the distinct induction effect. We would like to try more condition to improve the performance of the sensors.
</p>
</p>
 +
Line 406: Line 426:
-
<p id="ReferenceXylR">
+
<p id="Reference">
<B>Reference:</B>
<B>Reference:</B>
</br>
</br>
-
[1] Abril, M. A., Michan, C., Timmis, K. N., & Ramos, J. (1989). Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion
+
[1] Díaz, E., Ferrández, A., & García, J. L. (1998). Characterization of the hca Cluster Encoding the Dioxygenolytic Pathway for Initial Catabolism of 3-Phenylpropionic Acid in Escherichia coliK-12. Journal of bacteriology, 180(11), 2915-2923.
-
 
+
-
of the substrate range of the pathway.Journal of bacteriology, 171(12), 6782-6790.
+
</br>
</br>
-
[2] Gerischer, U. (2002). Specific and global regulation of genes associated with the degradation of aromatic compounds in bacteria. Journal of molecular microbiology and biotechnology, 4(2), 111-
+
[2] Ferrández, A., García, J. L., & Díaz, E. (1997). Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl) propionate catabolic pathway of Escherichia coli K-12. Journal of bacteriology, 179(8), 2573-2581.</br>
-
122.
+
[3] Manso, I., Torres, B., Andreu, J. M., Menéndez, M., Rivas, G., Alfonso, C., ... & Galán, B. (2009). 3-Hydroxyphenylpropionate and phenylpropionate are synergistic activators of the MhpR transcriptional regulator from Escherichia coli. Journal of Biological Chemistry, 284(32), 21218-21228.
</br>
</br>
-
[3] Valls, M., Silva‐Rocha, R., Cases, I., Muñoz, A., & de Lorenzo, V. (2011). Functional analysis of the integration host factor site of the σ54Pu promoter of Pseudomonas putida by in vivo UV
+
[4] Galán, B., Kolb, A., Sanz, J. M., García, J. L., & Prieto, M. A. (2003). Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic acids research, 31(22), 6598-6609.
-
 
+
-
imprinting. Molecular microbiology, 82(3), 591-601.
+
</br>
</br>
-
[4] Devos, D., Garmendia, J., Lorenzo, V. D., & Valencia, A. (2002). Deciphering the action of aromatic effectors on the prokaryotic enhancer‐binding protein XylR: a structural model of its N‐
+
[5] Prieto, M. A., Diaz, E., & García, J. L. (1996). Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Journal of bacteriology, 178(1), 111-120.
-
 
+
-
terminal domain. Environmental microbiology, 4(1), 29-41.
+
</br>
</br>
-
[5] Salto, R., Delgado, A., Michán, C., Marqués, S., & Ramos, J. L. (1998). Modulation of the function of the signal receptor domain of XylR, a member of a family of prokaryotic enhancer-like
+
[6] Ferrández, A., Miñambres, B., Garcı́a, B., Olivera, E. R., Luengo, J. M., Garcı́a, J. L., & Dı́az, E. (1998). Catabolism of phenylacetic acid in Escherichia coli characterization of a new aerobic hybrid pathway. Journal of Biological Chemistry, 273(40), 25974-25986.
-
 
+
-
positive regulators. Journal of bacteriology,180(3), 600-604.
+
-
</br>
+
-
[6] Garmendia, J., & De Lorenzo, V. (2000). The role of the interdomain B linker in the activation of the XylR protein of Pseudomonas putida. Molecular microbiology, 38(2), 401-410.
+
-
</br>
+
-
[7] Tropel, D., & Van Der Meer, J. R. (2004). Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiology and Molecular Biology Reviews, 68(3), 474-500.
+
-
</br>
+
-
[8] Pérez-Martín, J., & de Lorenzo, V. (1996). ATP Binding to the σ< sup> 54</sup>-Dependent Activator XylRTriggers a Protein Multimerization Cycle Catalyzed by UAS DNA. Cell, 86(2), 331-339.
+
-
</br>
+
-
[9] de las Heras, A., Chavarría, M., & de Lorenzo, V. (2011). Association of dnt genes of Burkholderia sp. DNT with the substrate‐blind regulator DntR draws the evolutionary itinerary of 2, 4‐
+
-
 
+
-
dinitrotoluene biodegradation. Molecular microbiology, 82(2), 287-299.
+
-
</br>
+
-
[10] de las Heras, A., & de Lorenzo, V. (2011). Cooperative amino acid changes shift the response of the σ54‐dependent regulator XylR from natural m‐xylene towards xenobiotic 2, 4‐
+
-
 
+
-
dinitrotoluene. Molecular microbiology, 79(5), 1248-1259.
+
-
</br>
+
-
[11] Garmendia, J., De Las Heras, A., Galvão, T. C., & De Lorenzo, V. (2008). Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to
+
-
 
+
-
nitrotoluenes. Microbial Biotechnology, 1(3), 236-246.
+
-
</br>
+
-
[12] Kim, M. N., Park, H. H., Lim, W. K., & Shin, H. J. (2005). Construction and comparison of< i> Escherichia coli</i> whole-cell biosensors capable of detecting aromatic compounds. Journal of  
+
-
 
+
-
microbiological methods, 60(2), 235-245.
+
</br>
</br>
-
[13] Garmendia, J., Devos, D., Valencia, A., & De Lorenzo, V. (2001). À la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer‐binding protein XylR to non‐natural
+
[7] Ferrández, A., Garcı́a, J. L., & Dı́az, E. (2000). Transcriptional Regulation of the Divergent paaCatabolic Operons for Phenylacetic Acid Degradation inEscherichia coli. Journal of Biological Chemistry, 275(16), 12214-12222.
-
effectors. Molecular microbiology, 42(1), 47-59.
 
</p>
</p>

Revision as of 15:10, 22 September 2013

Biosensors

A FAST, EASY AND ACCURATE METHOD TO DETECT TOXIC AROMATIC COMPOUNDS

XylR

Overview

Mechanism

Previous Engineering Effort

Our Work

Escherichia coli play an essential role in the circulation of materials in the nature, especially for aromatic compounds. The gene clusters related to the aromatic compounds mainly include hca (for 3-phenylpropionic acid and cinnamic acid), mhp (for 3-hydroxyphenylpropionate and phenylpropionate), paa (for phenylacetic acid) and hpa (for 4-hydroxyphenylacetic acid). All of them have the regulators to control the expression of corresponding genes, according to which we could design biosensors detecting aromatic compounds.

HcaR is a 32,838 Da (296 amino acids) protein, which belongs to LysR family. Its’ N-terminal domain functions in DNA binding via a helix-turn-helix motif, while C-terminal domain functions in multimerization. As an activator, HcaR activates the expression of hca cluster at the presence of ligands. It detects limited range of ligands, including 3-phenylpropionic acid (PPA) and cinnamic acid (CnA) [1]

MhpR is a 31,767 Da (281 amino acids) protein. It belongs to IclR family, which forms helix-turn-helix motif at N-terminal. MhpR behaves as an activator to initiate the expression of mhp cluster when contacts with its ligands, 3-hydroxyphenylpropionate (3-HPPA), 3-hydoxycinnamate (3-HCnA) and 3-(2, 3-dihydroxyphenyl) propionic acid (2,3-DHPPA). [2]

hca and mhp clusters are involved in the catabolism of PPA and CnA in E. coli (Fig. 1). The enzymes encoded by hca cluster degrade PPA and CnA to 2,3-DHPPA and 2,3-DHCnA respectively, which serve as the substrates of the mhp cluster. The enzymes in mhp cluster function in the cleavage of aromatic ring.

Compared with the sole 2,3-DHPPA, the special induction effect of PPA and 2,3-DHPPA is obtained, although PPA don’t behave as ligand alone. Based on the result and the observation of different binding site of PPA with MhpR, it is deduced that PPA and 2,3-DHPPA have synergistic effect to the activation of MhpR expression [3]. (That is to say, PPA enhances the activation effect as a cooperator of 2,3-DHPPA instead of a ligand.) The same effect is observed in 3-HPPA along with PPA.

The synergistic effect seems to be explained by pre-activation mechanism. It is that 2,3-DHPPA is a product of PPA degradation by hca cluster, and it will accumulate before activating the expression of the downstream mhp cluster. 2,3-DHPPA has cytotoxicity to the bacteria. The pre-activation mechanism activates the downstream cluster at low ligand concentration so that bacteria consume it to prevent accumulation of toxicity. The mechanism reflects the precise control across several pathways in bacteria, and also contributes to the sensor application [3].

Based on the information, our team constructed the Ph/HcaR expression system. The coding sequence of HcaR was obtained from the genome of E. coli K12 via PCR. Constitutive Pc promoters are used to initiate the expression of hcaR on pSB4K5, and sfGFP, as a reporter gene, is under the control of Ph, the cognate promoter of HcaR.

We also created a Pc library to obtain the optical performance of this expression system which gets the best induction ratio. The library consists of a series of Pc promoters with different expression intensity, including BBa_J23113, J23109, J23114 and J23106. Primary test following protocol 1 showed that HcaR performed best under the control of BBa_J23106. Then the best performed expression system is subjected to the On-Off test about 78 aromatics according to protocol 1. Results showed that HcaR worked as a specific sensor to PPA (Fig. 2).

HpaR is of 17,235 Da (149 amino acid) that belongs to MarR family [4]. It performs as a repressor of the hpa cluster consisting of hpaGEDFHI genes (Fig. 4), which participates in the catabolic pathway of 4-hydroxyphenylacetic acid (4HPAA) (Fig. 3). HpaR derepress the downstream genes when contacting with ligands, including 4HPAA, 3-hydroxyphenylacetic acid (3HPAA) and 3, 4-dihydroxyphenylacetic acid (3,4-DHPAA).

hpa cluster consists of three operons. The regulator gene, hpaR, is transcribed in the divert direction to other genes under PR promoter. The adjacent promoter, PG, initiates the transcription of the functional hpaGEDFHI operon. PR and PG are both regulated by HpaR and located in the intergenic region between the hpaR and hpaG (Fig. 4). There are two HpaR binding sites, OPR1 and OPR2, belonging to PR and PG respectively. Each binding site contains palindrome sequence

which contacts with HpaR dimer in absence of ligand, inhibiting the transcription initiation. OPR1 is centered in the +2 site of PG. OPR2, however, is centered in the +40 site downstream of PR. It is hypothesized that HpaR binding to OPR1 inhibits the formation of open complex while binding to OPR2 blocks the elongation step (Fig. 5).

Interestingly, based on the gel retardation assays, most of the HpaR dimer still contact with the OPR1 in the presence of the ligand, which recruits the RNAP and form open-complex. In this way, HpaR can be regarded as an activator.

The two binding site, OPR1 and OPR2, perform obvious synergistic effect, i.e., binding with PG obviously improve the affinity of HpaR to PR. It is hypothesized that HpaR dimer binding to one OPR get dimerized again and generates a repression loop, similar with the AraC and PBAD. Contact with ligand disrupts the dimerization of dimer and consequently initiates transcription of the hpaGEDFHI cluster. [4]

We obtained hpaR coding sequence via PCR and constructed Pg/HpaR expression system. Pc promoter J23106 is selected to initiate the transcription of hpaR. However, we haven`t got the obvious induction ratio. It is hypothesized that several overall-controlling sites are located in the promoter, i.e., IHF and CRP. The main function of the pathway is to use the complementary carbon source in the environment, so bacteria will control strictly the expression of the relative genes in rich condition.

PaaX is a repressor of 316-amino acid. As a member of GntR family, it contains a stretch of 25 residues that is similar with the helix-turn-helix motif functioning in DNA recognition and binding [6]. PaaX contacts with palindrome sequence located at its cognate promoter, Pa, inhibiting the promoter at the absence of the ligand. Unlike other sensors in E. coli, PaaX detects phenylacetic acid-CoA (PA-CoA), which is the first intermediate in the PA degradation pathway. The first step is catalyzed by PaaK [6], [7].

There are three operons in paa clusters, paaZ, paaABCDEFGHIJK and paaXY. (Fig. 6) The promoters regulated by PaaX, PZ and PA, are located at the intergenic region between paaZ and paaA. They possess a palindromic sequence respectively for binding to the repressor. (Fig. 7)

We standardized the PaaX genes and create Pa/PaaX expression system. We tuned the expression intensity of the repressor via selecting appropriate Pc promoter. Similar with HpaR, the expression of PA promoter is inhibited by the overall-controlling factor and we haven`t got the distinct induction effect. We would like to try more condition to improve the performance of the sensors.

We standardized the PaaX genes and create Pa/PaaX expression system. We tuned the expression intensity of the repressor via selecting appropriate Pc promoter. Similar with HpaR, the expression of PA promoter is inhibited by the overall-controlling factor and we haven`t got the distinct induction effect. We would like to try more condition to improve the performance of the sensors.

Fig. 1. TOL pathway, the xyl gene cluster and regulatory mechanism, XylR controls Pu promoter and Ps2 promoter. Ps1 is a weak constitutive promoter, which controls the level of XylS.When xylene or its homologous compounds exist, the upper pathway and another promoter called XylS is activated.

Fig. 2. TOL degradation pathway, XylR’s inducers, Toluene’s homologous compounds, is shown in blue.

Fig. 3. Protein domains of XylR: From N terminal to C terminal are the functional domain A, linker B, dimer domain C and DNA binding domain D as discussed below.

Fig. 4. σ54-dependent TF mechanism for XylR activation.
Step1: RNAP recruit facilitated by σ54, XylR have formed dimers when binding to DNA.
Step2: Formation of XylR tetramer, this process is coupled with ATP hydrolysis.
Step3: RNAP ready to transcription
Step4: Transcription start, with σ54’s divorce from its position.

Reference:
[1] Díaz, E., Ferrández, A., & García, J. L. (1998). Characterization of the hca Cluster Encoding the Dioxygenolytic Pathway for Initial Catabolism of 3-Phenylpropionic Acid in Escherichia coliK-12. Journal of bacteriology, 180(11), 2915-2923.
[2] Ferrández, A., García, J. L., & Díaz, E. (1997). Genetic characterization and expression in heterologous hosts of the 3-(3-hydroxyphenyl) propionate catabolic pathway of Escherichia coli K-12. Journal of bacteriology, 179(8), 2573-2581.
[3] Manso, I., Torres, B., Andreu, J. M., Menéndez, M., Rivas, G., Alfonso, C., ... & Galán, B. (2009). 3-Hydroxyphenylpropionate and phenylpropionate are synergistic activators of the MhpR transcriptional regulator from Escherichia coli. Journal of Biological Chemistry, 284(32), 21218-21228.
[4] Galán, B., Kolb, A., Sanz, J. M., García, J. L., & Prieto, M. A. (2003). Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic acids research, 31(22), 6598-6609.
[5] Prieto, M. A., Diaz, E., & García, J. L. (1996). Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: engineering a mobile aromatic degradative cluster. Journal of bacteriology, 178(1), 111-120.
[6] Ferrández, A., Miñambres, B., Garcı́a, B., Olivera, E. R., Luengo, J. M., Garcı́a, J. L., & Dı́az, E. (1998). Catabolism of phenylacetic acid in Escherichia coli characterization of a new aerobic hybrid pathway. Journal of Biological Chemistry, 273(40), 25974-25986.
[7] Ferrández, A., Garcı́a, J. L., & Dı́az, E. (2000). Transcriptional Regulation of the Divergent paaCatabolic Operons for Phenylacetic Acid Degradation inEscherichia coli. Journal of Biological Chemistry, 275(16), 12214-12222.