Team:UNITN-Trento/Project/Methyl Salicylate
From 2013.igem.org
Line 10: | Line 10: | ||
<span class="tn-title">Results - Methyl Salicylate </span> | <span class="tn-title">Results - Methyl Salicylate </span> | ||
<p> | <p> | ||
- | It was difficult to find a volatile molecule that could be enzymatically produced by a bacterium and also demonstrated to be an efficient ripening inhbitor. There were not many candidates to choose from and after a long search we chose methyl salicylate (MeSA). Previous publications suggested that MeSA could inhibit the ripening of either | + | It was difficult to find a volatile molecule that could be enzymatically produced by a bacterium and also demonstrated to be an efficient ripening inhbitor. There were not many candidates to choose from and after a long search we chose methyl salicylate (MeSA). Previous publications suggested that MeSA could inhibit the ripening of either kiwifruit <span class="tn-ref"> (Aghdam, M., et al. Methyl Salicylate Affects the Quality of Hayward Kiwifruits during. Journal of Agricultural Science. June 2011, Vol. 3, 2, pp. 149-156.) </span) and tomatoes, at a concentration of 0.5 mM <span class="tn-ref"> (The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Ding, C. and Wang, Y. 164, 2003, Plant Science, pp. 589-596.) </span) |
</p> | </p> | ||
<p> | <p> |
Revision as of 21:31, 28 September 2013
It was difficult to find a volatile molecule that could be enzymatically produced by a bacterium and also demonstrated to be an efficient ripening inhbitor. There were not many candidates to choose from and after a long search we chose methyl salicylate (MeSA). Previous publications suggested that MeSA could inhibit the ripening of either kiwifruit (Aghdam, M., et al. Methyl Salicylate Affects the Quality of Hayward Kiwifruits during. Journal of Agricultural Science. June 2011, Vol. 3, 2, pp. 149-156.) (The dual effects of methyl salicylate on ripening and expression of ethylene biosynthetic genes in tomato fruit. Ding, C. and Wang, Y. 164, 2003, Plant Science, pp. 589-596.)
Fortunately many of the needed parts were already available because of the work of the MIT iGEM 2006 team (Eau de Coli).
< img id="mesapath" style=" margin-bottom: 1em;" src="https://static.igem.org/mediawiki/2013/d/dd/Tn-2013_MeSA_path.jpg" />We modified and improved these parts and resubmitted them to the registry, as they were not available in pSB1C3.
MeSA detectionTo have a quantitative analysis we used a Finnigan Trace GC ULTRA with a flame ionization detector (FID) that allowed us to detect ions formed during MeSA combustion in a hydrogen flame. The generation of this ions is proportional to MeSA concentration in the sample stream. A calibration curve was initially created using samples with a well known pure MeSA concentration (0 mM, 0.2 mM, 0.5 mM, 1.0 mM, 2 mM).