Team:Nanjing-China/rib

From 2013.igem.org

(Difference between revisions)
 
(19 intermediate revisions not shown)
Line 7: Line 7:
   <div class="header">
   <div class="header">
     <div class="top"></div>
     <div class="top"></div>
-
     <div class="logo"><a href="https://static.igem.org/mediawiki/2013/6/68/IgemLogo.png" target="_blank"></a></div>
+
     <div class="logo"><a href="https://2013.igem.org/Main_Page" target="_blank" class="bl"></a><a href="https://igem.org/Team.cgi?year=2013&team_name=Nanjing-China" target="_blank" class="bl2"></a></div>
     <div class="gywm"><a href="https://2013.igem.org/Team:Nanjing-China/contact"></a></div>
     <div class="gywm"><a href="https://2013.igem.org/Team:Nanjing-China/contact"></a></div>
     <div class="nav">
     <div class="nav">
Line 30: Line 30:
         <ul id=PKU_subsubmenu class=vertical onmouseout=listReset();>
         <ul id=PKU_subsubmenu class=vertical onmouseout=listReset();>
           <li class="bar">Project</li>
           <li class="bar">Project</li>
-
           <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/overall">Overall Project</a></li>
+
           <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/project">Overall Project</a></li>
-
           <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/pre">Pre-experiment</a></li>
+
           <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/pre">Pre-experiments</a></li>
-
           <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/tran">Transporter</a></li>
+
           <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/tran">Transportation</a></li>
-
          <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/qs">QS System</a></li>
+
  <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/rib" class="son_hover">Recognition</a></li>
-
           <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/rib" class="son_hover">Ribosome Switch</a></li>
+
           <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/qs">Aggregation</a></li>
-
           <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/deg">Degrading Enzyme</a></li>
+
           <li class=trunk onmouseover=listTrigger(0);><a href="https://2013.igem.org/Team:Nanjing-China/deg">Degradation</a></li>
         </ul>
         </ul>
   </div>
   </div>
Line 59: Line 59:
       <div class="Project2">
       <div class="Project2">
         <dl>
         <dl>
-
             <dt><a href="###">Ribosome Switch</a></dt>
+
             <dt><a href="###">Recognition</a></dt>
             <dd class="dd_1">
             <dd class="dd_1">
-
Ribosome switch is used widely in synthetic biology to detect various small molecules. This summer, we chose an efficient ribosome switch which can detect atrazine created via a new method (NAT CHEM BIOL, Joy Sinha. et al., 2010). And then, our team verified the basic parameters about this amazing ribosome switch, including the lowest detect concentration and the induced time.<br/><br/>  
+
           
-
<strong>Experiments and Results</strong><br/>
+
Ribosome switch is used widely in synthetic biology to detect various small molecules. This summer, we chose an efficient ribosome switch created via a new method to detect atrazine  <sup>[1]</sup>. And then, our team verified the basic parameters about this amazing ribosome switch, including the lowest detect concentration and the induced time.<br><br>
-
Our team used this kind of ribosome switch which can detect atrazine to control the GFP expression in E.coli. E.coli expressed GFP after 20 hours under 500μM of atrazine, but could not express GFP without atrazine (Fig. 3-4-1). This shows the ribosome switch can be turned on under 500μM of atrazine. <br/><br/>
+
<strong>Experiments and Results</strong><br>
-
<img src="https://static.igem.org/mediawiki/2013/7/7a/Fig_3-4-1.jpg" width="716"><br/><br/>
+
Our team used this kind of ribosome switch which can detect atrazine to control the GFP expression in E.coli. E.coli expressed GFP after 20 hours under 500μM of atrazine, but could not express GFP without atrazine (Fig. 3-4-1). This shows the ribosome switch can be turned on under 500μM of atrazine.<br><br>
-
Fig. 3-4-1 Ribosome switch used in our experiments can detect atrazine. (A) The principle of how the ribosome switch works. (B) Observation of GFP under confocal microscope. Ribosome switch can be induced by atrazine under 500μM of atrazine.<br/><br/>
+
<p style="text-align:center"><img src="https://static.igem.org/mediawiki/2013/7/7a/Fig_3-4-1.jpg" width="600"></p><br/>
-
Our team used this part to control GFP expression in E.coli. We found all E.coli had expressed GFP under all the concentrations of atrazine, from 1μM to 500μM, in our experiment (Fig. 3-4-2). This data indicates that the ribosome switch can work under 1μM of atrazine.<br/><br/>
+
<div style="padding:0 50px; font-size:11px"><strong>Fig. 3-4-1</strong> The ribosome switch exhibits conformations and function. (A) The principle of how the ribosome switch works. (B) Ribosome switch is induced by atrazine under 500μM of atrazine.</div><br>
-
Fig. 3-4-2 Various concentrations of atrazine were detected after 20h culturing.<br/><br/>  
+
Our team used this part to control GFP expression in E.coli. We found all E.coli had expressed GFP under all the concentrations of atrazine, from 1μM to 500μM, in our experiment (Fig. 3-4-2). This data indicates that the ribosome switch can work under 1μM of atrazine.<br><br>
-
<img src="https://static.igem.org/mediawiki/2013/0/04/T2_rbs.png" width="716"><br/><br/>
+
<p style="text-align:center"><img src="https://static.igem.org/mediawiki/2013/0/04/Fig_3-4-2.jpg" width="600"></p><br>
-
Our team used this part to control the GFP expression in E.coli. We found E.coli had merely expressed GFP after 12 hours under 200uM of atrazine. This data elucidates that the ribosome switch can work after 12 hours under 200uM of atrazine.<br/>  
+
<div style="padding:0 50px; font-size:11px"><strong>Fig. 3-4-2</strong> Various concentrations of atrazine were detected after 20h culturing. We detect the expression of GFP after the strain K-12 is cultured for 20h in the different concentrations from 1μM to 500μM.</div><br/><br/>
-
Fig. 3-4-3 The ribosome switch was induced at different time under 200uM of atrazine.<br/> <br/>  
+
Our team used this part to control the GFP expression in E.coli. We found E.coli had merely expressed GFP after 12 hours under 200μM of atrazine (Fig. 3-4-3).. This data elucidates that the ribosome switch can work after 12 hours under 200μM of atrazine.<br><br>
-
<img src="https://static.igem.org/mediawiki/2013/7/72/T3_rbs.png" width="716"><br/> <br/>  
+
<p style="text-align:center"><img src="https://static.igem.org/mediawiki/2013/7/7d/Fig_3-4-3.jpg" width="600"></p><br/>
-
According to these data, this ribosome switch is more efficient than the one used before. Therefore, we are confident of the fact that we can put this amazing part into detecting atrazine in real life.    
+
<div style="padding:0 50px; font-size:11px"><strong>Fig. 3-4-3</strong> The ribosome switch was induced at different time under 200μM of atrazine. We detect the expression of GFP after that the strain K-12 is cultured under 200μM of atrazine at the different time from 6h to 12h.</div><br><br>According to these data, this ribosome switch is more efficient than the one used before. <br><br>
 +
However, for the reason of fluorescence quenching, the fluorescence intensity would descending for too high concentration of GFP. So we detected the RFU changing with time and atrazine’s concentration and identified the range of concentration of atrazine (Fig. 3-4-4). Therefore, we are confident of the fact that we can put this amazing part into detecting atrazine in real life. <br>
 +
<p style="text-align:center"><img src="https://static.igem.org/mediawiki/2013/2/2f/3-4-4.jpg"></p><br/>
 +
<div style="padding:0 50px; font-size:11px"><strong>Fig. 3-4-4</strong> The RFU changing with time and atrazine’s concentration.</div><br/><br/>
 +
<strong>Reference</strong><br/>
 +
[1] Sinha J, et al. Reprogramming bacteria to seek and destroy a herbicide. Nature chemical biology, 2010, 6 (6): 464-470.
             </dd>
             </dd>
         </dl>
         </dl>
Line 99: Line 104:
     </div>
     </div>
     <div class="p1">Team NANJING UNIVERSITY All Rights Reserved.</div>
     <div class="p1">Team NANJING UNIVERSITY All Rights Reserved.</div>
 +
<style>
 +
            #tbox{width:64px; height:73px; float:right; position:fixed;
 +
_position:absolute;
 +
_bottom:auto;
 +
_top:expression(eval(document.documentElement.scrollTop+document.documentElement.clientHeight-this.offsetHeight-(parseInt(this.currentStyle.marginTop,200)||0)-(parseInt(this.currentStyle.marginBottom,200)||0)));
 +
_margin-bottom:10px;
 +
}/*解决IE6下不兼容 position:fixed 的问题*/
 +
#gotop{ width:64px; height:64px; background:url(https://static.igem.org/mediawiki/2013/6/62/Top.gif) no-repeat; position:absolute; top:0px; display:none; cursor:pointer}
 +
        </style>
 +
        <script type="text/javascript" src="http://www.11ml.cn/templets/default/js/jquery-1.4.2.min.js"></script>
 +
        <script type="text/javascript" src="http://www.11ml.cn/templets/default/js/js.js"></script>
 +
        <div id="tbox"><a id="gotop" href="javascript:void(0)"></a></div>
</div>
</div>
<!--//footer-->
<!--//footer-->
</html>
</html>

Latest revision as of 03:04, 27 October 2013

Recognition
Ribosome switch is used widely in synthetic biology to detect various small molecules. This summer, we chose an efficient ribosome switch created via a new method to detect atrazine [1]. And then, our team verified the basic parameters about this amazing ribosome switch, including the lowest detect concentration and the induced time.

Experiments and Results
Our team used this kind of ribosome switch which can detect atrazine to control the GFP expression in E.coli. E.coli expressed GFP after 20 hours under 500μM of atrazine, but could not express GFP without atrazine (Fig. 3-4-1). This shows the ribosome switch can be turned on under 500μM of atrazine.


Fig. 3-4-1 The ribosome switch exhibits conformations and function. (A) The principle of how the ribosome switch works. (B) Ribosome switch is induced by atrazine under 500μM of atrazine.

Our team used this part to control GFP expression in E.coli. We found all E.coli had expressed GFP under all the concentrations of atrazine, from 1μM to 500μM, in our experiment (Fig. 3-4-2). This data indicates that the ribosome switch can work under 1μM of atrazine.


Fig. 3-4-2 Various concentrations of atrazine were detected after 20h culturing. We detect the expression of GFP after the strain K-12 is cultured for 20h in the different concentrations from 1μM to 500μM.


Our team used this part to control the GFP expression in E.coli. We found E.coli had merely expressed GFP after 12 hours under 200μM of atrazine (Fig. 3-4-3).. This data elucidates that the ribosome switch can work after 12 hours under 200μM of atrazine.


Fig. 3-4-3 The ribosome switch was induced at different time under 200μM of atrazine. We detect the expression of GFP after that the strain K-12 is cultured under 200μM of atrazine at the different time from 6h to 12h.


According to these data, this ribosome switch is more efficient than the one used before.

However, for the reason of fluorescence quenching, the fluorescence intensity would descending for too high concentration of GFP. So we detected the RFU changing with time and atrazine’s concentration and identified the range of concentration of atrazine (Fig. 3-4-4). Therefore, we are confident of the fact that we can put this amazing part into detecting atrazine in real life.


Fig. 3-4-4 The RFU changing with time and atrazine’s concentration.


Reference
[1] Sinha J, et al. Reprogramming bacteria to seek and destroy a herbicide. Nature chemical biology, 2010, 6 (6): 464-470.