Team:Dundee/Project/SoftwareTheory

From 2013.igem.org

(Difference between revisions)
 
(64 intermediate revisions not shown)
Line 1: Line 1:
 +
{{:Team:Dundee/Templates/Navigationbar}}
 +
<html>
<html>
<html lang="en">
<html lang="en">
-
  <head>
 
-
    <meta charset="utf-8">
 
-
    <title>iGEM Dundee 2013 &middot; Toxi-Mop</title>
 
-
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
 
-
    <meta name="description" content="">
 
-
    <meta name="author" content="">
 
-
 
-
    <!-- CSS -->
 
-
    <link href=' http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>
 
-
    <link href="http://www.kyleharrison.co.uk/igem/assets/css/bootstrap.css" rel="stylesheet">
 
-
    <link href="http://www.kyleharrison.co.uk/igem/assets/css/style.css" rel="stylesheet">
 
-
 
-
    <!--
 
-
    <link href="http://www.kyleharrison.co.uk/igem/assets/css/bootstrap-responsive.css" rel="stylesheet">
 
-
-->
 
-
    <!-- HTML5 shim, for IE6-8 support of HTML5 elements -->
 
-
    <!--[if lt IE 9]>
 
-
      <script src="http://www.kyleharrison.co.uk/igem/assets/js/html5shiv.js"></script>
 
-
    <![endif]-->
 
-
 
-
    <!-- Fav and touch icons -->
 
-
    <link rel="apple-touch-icon-precomposed" sizes="144x144" href="../assets/ico/apple-touch-icon-144-precomposed.png">
 
-
    <link rel="apple-touch-icon-precomposed" sizes="114x114" href="../assets/ico/apple-touch-icon-114-precomposed.png">
 
-
      <link rel="apple-touch-icon-precomposed" sizes="72x72" href="../assets/ico/apple-touch-icon-72-precomposed.png">
 
-
                    <link rel="apple-touch-icon-precomposed" href="../assets/ico/apple-touch-icon-57-precomposed.png">
 
-
                                  <link rel="shortcut icon" href="../assets/ico/favicon.png">
 
-
  </head>
 
-
 
-
  <body>
 
-
 
-
    <!-- Part 1: Wrap all page content here -->
 
-
    <div id="wrap">
 
-
 
-
      <!-- Fixed navbar -->
 
-
      <div class="navbar navbar-fixed-top">
 
-
        <div class="navbar-inner">
 
-
 
-
          <div class="container">
 
-
            <button type="button" class="btn btn-navbar" data-toggle="collapse" data-target=".nav-collapse">
 
-
              <span class="icon-bar"></span>
 
-
              <span class="icon-bar"></span>
 
-
              <span class="icon-bar"></span>
 
-
            </button>
 
-
            <a class="brand" href="/Team:Dundee">Dundee iGEM 2013</a>
 
-
            <div class="nav-collapse collapse">
 
-
              <ul class="nav">
 
-
                <li class="active"><a href="/Team:Dundee">Home</a></li>
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="/Team:Dundee/Team">Meet the Team</a></li>
 
-
                    <li><a href="https://igem.org/Team.cgi?id=1012">Team Information</a></li>
 
-
                    <li><a href="/Team:Dundee/Team/Acknowledgements">Acknowledgements</a></li>
 
-
                    <li><a href="/Team:Dundee/Team/Attributions">Attributions</a></li>
 
-
                    <li><a href="/Team:Dundee/Team/Gallery">Gallery</a></li>
 
-
                    <li><a href="/Team:Dundee/Team/Contact">Contact</a></li>
 
-
                  </ul>
 
-
                </li>
 
-
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="/Team:Dundee/Project">Project Overview</a></li>
 
-
                    <li><a href="/Team:Dundee/Project/Notebook">Notebook</a></li>
 
-
                    <li class="divider"></li>
 
-
                    <li class="nav-header">Lab</li>
 
-
 
-
                    <li><a href="/Team:Dundee/Project/LabOverview">Lab Overview</a></li>
 
-
                    <li><a href="/Team:Dundee/Project/Mop">Mop</a></li>
 
-
                    <li><a href="/Team:Dundee/Project/Detector">Detector</a></li>
 
-
                    <li class="divider"></li>
 
-
                    <li class="nav-header">Modelling </li>
 
-
                    <li><a href="/Team:Dundee/Project/MathOverview">Modelling Overview</a></li>
 
-
                    <li><a href="/Team:Dundee/Project/MathTheory">Theory</a></li>
 
-
                    <li class="divider"></li>
 
-
                    <li class="nav-header">Software</li>
 
-
                  <li><a href="/Team:Dundee/Project/SoftwareOverview">Software Overview</a></li>
 
-
                  <!--<li><a href="/Team:Dundee/Project/SoftwareTheory">Mop-toppus</a></li>-->
 
-
                  </ul>
 
-
                </li>
 
-
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="#">Our Biobricks</a></li>
 
-
                    <li><a href="#">Improvements</a></li>
 
-
                  </ul>
 
-
                </li>
 
-
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Safety <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="#">General Safety</a></li>
 
-
                    <li><a href="#">Safety in the Lab</a></li>
 
-
                    <li><a href="#">Public Safety and Awareness</a></li>
 
-
                    <li><a href="#">Enviromental Safety</a></li>
 
-
                  </ul>
 
-
                </li>
 
-
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Human Practice <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="#">Overview</a></li>
 
-
                    <li><a href="#">Collaboration</a></li>
 
-
                    <li><a href="#">Outreach</a></li>
 
-
                    <li><a href="/Team:Dundee/HumanPractice/CaseStudy">Clatto Case Study</a></li>
 
-
                    <li class="divider"></li>
 
-
                    <li class="nav-header">Media</li>
 
-
                    <li><a href="http://www.youtube.com/channel/UCvHOQ9Y1PqKInj6iCwLqTJw/feed?view_as=public">Youtube Channel</a></li>
 
-
                    <li><a href="#">Graphic Novel</a></li>
 
-
                    <li><a href="http://www.flickr.com/photos/97927329@N05/">Flickr</a></li>
 
-
                    <li><a href="#">Video Game</a></li>
 
-
                    <li class="divider"></li>
 
-
                    <li class="nav-header">Social Media</li>
 
-
                    <li><a href="https://www.facebook.com/DundeeiGem2013">Facebook</a></li>
 
-
                    <li><a href="https://twitter.com/DundeeiGEMTeam">Twitter</a></li>
 
-
                    <li><a href="https://plus.google.com/u/0/116223511035478208262/posts?hl=en_US">Google+</a></li>
 
-
                   
 
-
                  </ul>
 
-
                </li>
 
-
 
-
                <!--
 
-
                <li class="dropdown">
 
-
                  <a href="#" class="dropdown-toggle" data-toggle="dropdown">Sponsors <b class="caret"></b></a>
 
-
                  <ul class="dropdown-menu">
 
-
                    <li><a href="/Team:Dundee/Sponsors">Our Sponsors</a></li>
 
-
                    <li><a href="#">Sponsorship Levels</a></li>
 
-
                  </ul>
 
-
                </li>
 
-
              -->
 
-
              <li><a href="/Team:Dundee/Sponsors">Our Sponsors</a></li>
 
-
 
-
 
-
              </ul>
 
-
            </div><!--/.nav-collapse -->
 
-
          </div>
 
-
        </div>
 
-
      </div>
 
       <!-- Begin page content -->
       <!-- Begin page content -->
Line 145: Line 9:
       <!-- Title -->
       <!-- Title -->
       <div class="page-header">
       <div class="page-header">
-
           <h2><b>Toxi Mop </b> - Splash and the toxin's gone!</h2>
+
           <h2><b>Moptopus - Hardware</b> </h2>
         </div>
         </div>
       <!-- Title End -->
       <!-- Title End -->
-
<div class="span12" style="margin-left:0px;margin-top: -35px;">
 
-
            <!-- a very basic slider, note the structure of each item. you can add too but not take away (classes and id's that is) -->
+
      <div class="row" style="text-align:justify;margin-top:-20px">
-
            <div id="slider" class="carousel slide">
+
          <div class="span12">
 +
            <img id="image-6" src="https://static.igem.org/mediawiki/2013/thumb/d/d2/MoptopusBanner.jpg/800px-MoptopusBanner.jpg" style="width:100%;height:300px">
 +
          </div>
-
              <div class="carousel-inner">
+
        </div>
-
                <div class="item active"><!-- add the active class to any slider you want shown first -->
+
        <div class="row" style="text-align:justify;margin-top:20px">
-
                  <img src="http://farm8.staticflickr.com/7328/9236704273_7e9d405c4e_o.jpg">
+
          <div class="span6">
-
                </div>
+
          <p>The Moptopus is an electronic environmental sensor,  developed to collect and relay real-time data from water reservoirs. The device could be placed in a water body to measure:</p>
 +
          <ul style="padding-left:15px">
 +
            <li>Light Levels</li>
 +
            <li>Temperature</li>
 +
            <li>Humidity</li>
 +
            <li>pH level of the water</li>
 +
            <li>Dissolved oxygen level</li>
 +
            <li>An on-board camera</li>
 +
          </ul>
-
                <div class="item">
+
            <p>The Moptopus device could  be used in conjunction with the biological microcystin detection system that we attempted to develop. Presence of microcystin in water would trigger the production of Green Fluorescence Protein (GFP) by the <i>E. coli</i> detector. The Moptopus has been designed to quantify the amount of GFP produced by the excitation of GFP  via a blue light and the capture of fluorescence emitted via a highly green light sensitive photodiode.</p>
-
                  <img src="http://farm3.staticflickr.com/2832/9191526631_b24b252cdf_o.jpg">
+
-
                </div>
+
-
 
+
-
                <div class="item">
+
-
 
+
-
                  <img src="http://placehold.it/1000x300/8066DB/000000&text=Project">
+
-
                </div>
+
-
 
+
-
                <div class="item">
+
-
                  <img src="http://placehold.it/1000x300/EB3C8B/000000&text=Our Team">
+
-
                </div>
+
-
 
+
-
              </div>
+
-
 
+
-
              <!-- the controls for our sliders -->
+
-
              <a class="left carousel-control " href="#slider" data-slide="prev">&lsaquo;</a>
+
-
              <a class="right carousel-control " href="#slider" data-slide="next">&rsaquo;</a>
+
-
 
+
-
            </div>
+
-
      </div>
+
-
 
+
-
 
+
-
      <div class="row">
+
-
      <!-- the main content -->
+
-
 
+
-
        <div class="span6" style="text-align:justify">
+
-
        <h2 style="margin-top:-10px;"> The Microcystin Monster </h2>
+
-
        <p> Algal blooms are an ever-growing problem in freshwater systems. At the Beijing Olympics 2008, 10,000 people were hired to clean up the extensive algal bloom in time for the sailing regatta. The main concern is the level of a toxin called microcystin, which is released by cyanobacteria when they die and lyse. <br><br>Currently, the method of detection takes a day to produce results, so our aim as a team is to develop a 60 minute microcystin detection system, as well as a method to combat the rising levels of the toxin in lakes, ponds, etc. The iGEM Dundee team were inspired to act on this problem due to not only its effect on the local freshwater reservoirs, but worldwide. </p>
+
-
        <br>
+
-
        </div>
+
-
 
+
-
        <div class="span6" style="margin-top:50px;">
+
-
              <iframe src="http://player.vimeo.com/video/69609812?color=c9ff23" width="460" height="281" frameborder="0" webkitAllowFullScreen mozallowfullscreen allowFullScreen></iframe>
+
           </div>
           </div>
-
      </div><!-- Row End -->
+
          <div class="span6">
 +
                <img id="image-6" src="https://static.igem.org/mediawiki/2013/thumb/c/c1/Moptopus_prototype.jpg/800px-Moptopus_prototype.jpg" style="width:100%">
-
      <!-- Row two -->
+
<center>
-
      <div class="row" style="margin-top:20px;">
+
<p><strong>Figure 1:</strong> Prototype design of the Moptopus</p>
-
 
+
</center>
-
        <div class="span6" style="text-align:justify">
+
          </div>
-
          <h2 style="margin-top:-10px;"> Save the Janitor, Save the world! </h2>
+
-
          <p> Microcystin, a toxin released by Microcystis aeruginosa, is harmful to mammals due to its ability to latch on to the human protein PP1, thus ceasing its operation.
+
-
          We are exploiting the ability of the human protein phosphatase (PP1) to covalently bind to microcystin, in order to develop a biological mop ‘janitor’ to rid algal bloom water of the toxin. <br><br>By changing domains on receptors on the cell surface of e.coli and b.subtilis, we plan to develop a method of microcystin detection. Thirdly, iGEM Dundee are creating ‘Moptopus’; a remote environmental monitoring device which is designed to detect pH, temperature, light, dissolved oxygen in H2O and even has a robotic eye. Moptopus can be controlled online and can even send tweets to alert the public whenever an algal bloom is imminent.
+
-
</p>
+
         </div>
         </div>
-
         <div class="span6" style="text-align:justify">
+
         <div class="row" style="text-align:justify;">
 +
          <div class="span12">
 +
            <h2>Important Guidelines</h2>
 +
            <p>To ensure adequate monitoring of water bodies and the presence of toxic algal blooms, guidelines developed by relevant agencies (such as World Health Organization and United States Environmental Protection Agency among other) were analysed. <br><br>
-
        <h2 style="margin-top:-10px;"> Unmasking the Monster </h2>
+
            Keeping the guidelines below in mind, readings taken remotely by the moptopus can be used to aid in the rapid identification of water bodies susceptible to algal blooms and more specifically to toxic algal blooms.<br><br>
-
        <p>
+
            </p>
-
        The public generally considers synthetic biology as an immoral concept, although if you imagine it as an episode of Scooby Doo, it doesn’t seem so bad; everyone is scared of this unknown monster, but underneath this mask is just a janitor. In the case of our project ToxiMop, we are using a ‘janitor bacterium’ to mop up the microcystin toxin from freshwater reservoirs!
+
-
        </p>
+
-
        <h2 style="margin-top:0px;"> The Universe's Lego Kit </h2>
+
            <ul style=”padding-left:15px”>
-
          <p>
+
-
          What comes to people's mind when they hear the term 'synthetic biology'? Many people don't know what it is, or have an ambiguous idea that it is something dangerous, potentially immoral. It can be thought of as playing with the universe's lego kit. Building with what is already here, naturally, biologists attempt to create better biological systems and machinery to advance life on earth. </p>
+
-
 
+
-
        </div>
+
-
      </div>
+
            <li>Blooms are most expected to occur in late summer/early autumn and are most common in water bodies which are eutrophic or hypereutrophicWHO.  Temperatures around 32oC correspond to the greatest growth rate. <sup>AJOL</sup></li>
 +
            <li>Water temperatures between 15oC and 30oC  and pH levels between 6 and 9,with adequate levels of nutrients, are required for the persistence of an algal bloom <sup>WHO</sup></li>
 +
            <li>The optimal temperature for toxin production in cyanobacteria is between 20oC and 25oC<sup>.WHO</sup> Greatest toxicity has been recorded at temperatures of approximately 20oC.<sup>AJOL</sup></li>
 +
            <li>Water temperatures greater than 25oC have proven advantageous for the growth of harmful algae when competing with non-harmful algae which grow faster than other non-harmful algae (specifically shown for <i>Microcystis Aeruginosa</i>). This advantage increases the likelihood of harmful algal blooms above this temperature.<sup>EPA</sup></li>
 +
            <li>The optimal growth rate of Microcystis Aeruginosa occurs at light levels between 3600 and 18000 lux. Light levels greater than 18000 lux result in a rapid decline in the growth rate. <sup>AJOL</sup>, White light intensity over 40 microeinsteins m-2 s-1 (equivalent to approx. 2160 lux) results in an increase in toxicity of cyanobacteria.<sup>WHO</sup></li>
 +
            <li>In terms of growth rate, However, in terms of toxicity the greatest cyanobacteria growth rate does not directly correspond to greatest toxicity.
 +
            </li>
 +
            <li>Hypoxia (a decrease in oxygen content in the water body) is often caused by algal blooms. This occurs when the organic matter of cyanobacteria decomposes and reduces oxygen dissolved in the water.<sup>NOAA</sup></li>
 +
            </ul>
 +
            <h2>Sources </h2>
 +
            <p>
 +
            WHO: <a href="http://www.who.int/water_sanitation_health/dwq/chemicals/cyanobactoxins.pdf">http://www.who.int/water_sanitation_health/dwq/chemicals/cyanobactoxins.pdf</a><br>
 +
            EPA: <a href="http://www2.epa.gov/sites/production/files/documents/climatehabs.pdf">http://www2.epa.gov/sites/production/files/documents/climatehabs.pdf<br></a>
 +
            AJOL: <a href="http://www.ajol.info/index.php/ajb/article/download/14935/61493</">http://www.ajol.info/index.php/ajb/article/download/14935/61493</a><br>
 +
            NOAA: <a href="http://www.noaa.gov/features/earthobs_0508/algal.html">http://www.noaa.gov/features/earthobs_0508/algal.html</a><br>
-
      <!-- Row Three -->
+
            </p>
-
      <div class="row" style="margin-top:20px;">
+
-
      <div class="span3">
 
-
        <div id="mainwrapper">
 
-
                    <!-- Image Caption 6 -->
 
-
              <div id="box-6" class="box">
 
-
                <img id="image-6" src="http://placehold.it/220/C6E546/000000&text=Toxi-Mop" style="width:220px;height:220px;"/>
 
-
              <span class="caption scale-caption" style="text-align:justify">
 
-
                          <p><b style="font-size:16px;">Toxi-Mop</b><br><br> We are using cloning techniques to genetically engineer B. subtilis and E. coli to express PP1 so that they can inhibit the toxin microcystin in algal blooms, therefore reducing harm to freshwater ecosystems. ”</p>
 
-
                </span>
 
-
              </div>
 
-
            </div>
 
-
      </div>
 
-
   
 
-
      <div class="span3">
 
-
        <div id="mainwrapper">
 
-
                  <!-- Image Caption 6 -->
 
-
            <div id="box-6" class="box">
 
-
              <img id="image-6" src="http://placehold.it/250/0699C1/000000&text=Mop-topus" style="width:220px;height:220px;"/>
 
-
              <span class="caption scale-caption" style="text-align:justify">
 
-
                          <p><b style="font-size:16px;">Project Mop-topus</b><br><br>  A remotly accessed electronic environmental sensor that detects and monitors the state of a lake and its susceptibility to algal blooms by measuring light, temperature, pH, and dissolved oxygen variables.</p>
 
-
              </span>
 
-
            </div>
 
           </div>
           </div>
         </div>
         </div>
-
      <div class="span3">
 
-
          <div id="mainwrapper">
 
-
                  <!-- Image Caption 6 -->
 
-
            <div id="box-6" class="box">
 
-
              <img id="image-6" src="http://placehold.it/250/8066DB/000000&text=Detection" style="width:220px;height:220px;"/>
 
-
              <span class="caption scale-caption" style="text-align:justify">
 
-
                          <p><b style="font-size:16px;">The Detector</b><br><br> We are making 2 different microcystin detectors by substituting domains of bacterial cell surface receptors involved with gene regulation, with PP1 molecules. </p>
 
-
              </span>
 
-
            </div>
 
-
          </div>
 
-
        </div>
 
-
      <div class="span3">
+
             <div class="row" style="text-align:justify">
-
          <div id="mainwrapper">
+
-
                  <!-- Image Caption 6 -->
+
-
             <div id="box-6" class="box">
+
-
              <img id="image-6" src="http://placehold.it/250/EB3C8B/000000&text=Our Team" style="width:220px;height:220px;"/>
+
-
              <span class="caption scale-caption" style="text-align:justify">
+
-
                          <p><b style="font-size:16px;">Our Team</b><br><br>The team is consists of biologists, a mathematician, a math biologist, a physicist and a software engineer. By bringing together students with different expertise, we strive to maintain and improve upon previous iGEM teams' achievements.</p>
+
        <div class="span12">
-
              </span>
+
    <h2> Platforms and Communication</h2>
-
            </div>
+
    <p>
-
          </div>
+
In order to use the sensors and detectors mentioned above, the Moptopus was created using two main control boards: the Raspberry Pi (Model B) and an Arduino (Mega 2560).</p> <br><br>
         </div>
         </div>
-
      </div>
+
<div class="span1"></div>
 +
          <div class="span4">
 +
            <img id="image-6" src="https://static.igem.org/mediawiki/2013/0/08/Dundee-Arduino.png" style="height:200px">
 +
          </div><div class="span2"></div>
-
       </div><!-- End Page Content -->
+
          <div class="span3">
 +
            <img id="image-6" src="https://static.igem.org/mediawiki/2013/thumb/7/7c/Dundee-Raspberry.png/497px-Dundee-Raspberry.png" style="height:200px">
 +
          </div><div class="span2"></div><br><br>
 +
       </div><!-- Row End -->
-
      <div id="push"></div>
+
<div class="row" style="text-align:justify">
-
    </div>
+
-
    <div id="footer">
+
<div class="span12">
-
      <div class="container">
+
<br><br>A Raspberry Pi (<a href="http://www.raspberrypi.org">http://www.raspberrypi.org</a>) is a low cost, low power computer system which can fit in the palm of your hand. It has no onboard storage and instead runs various distributions of linux via insert-able SD Cards.  The Raspberry Pi was chosen for our project due to its low cost and power requirements and the ability to easily program on it. <br>
-
        <p class="muted credit"> Created for <a href="https://igem.org/Main_Page">iGEM 2013</a> Dundee. Based upon <a href ="http://twitter.github.io/bootstrap/">Bootstrap</a> and <a href="http://jquery.com/">JQuery</a>. Design by <a href="www.kyleharrison.co.uk"> Kyle Harrison </a>. </p>
+
We implemented a Raspberry Pi as the control centre of the Moptopus. It carries out some information processing and controls the flow of information to any users. It is able to connect to the internet and allow a user to control the Moptopus while in operation. Our Raspberry Pi runs the Rasbian operating system (<a href="http://www.raspbian.org">http://www.raspbian.org</a>). . <br><br>
-
      </div>
+
-
    </div>
+
 +
An Arduino (<a href="http://www.arduino.cc">http://www.arduino.cc</a>) is a cheap microcontroller, able to control and read voltages from metal pins which are connected to it. The digital and analogue input/output pins on our Arduino Mega have been used to control modules such as an LCD screen, light sensors, temperature sensors and the dissolved oxygen and pH sensors. . <br><br>
-
    <!-- Le javascript
+
A number of methods of communication between the Raspberry Pi, Arduino and internet have been used. The Raspberry Pi is able to request data from a specific sensor by use of some of its own onboard pins. The configuration we used is called an I2C bus which is a serial communication method requiring just two pins on the Raspberry Pi and Arduino to communicate. Using this I2C bus, the Raspberry Pi asks the Arduino to take a specific measurement using one of the sensors. . <br>
-
    ================================================== -->
+
The Arduino is also equipped with an Ethernet shield allowing it to be connected to the Ethernet port aboard the Raspberry Pi. This allows the streaming of data from the Arduino to the Pi.
-
    <!-- Placed at the end of the document so the pages load faster -->
+
Finally, the Raspberry Pi has an added USB Wi-Fi device for connection to a local wireless network. This allows the Raspberry Pi to be communicated with and remotely logged into.<br><br>
-
    <!-- the neccessary javascript -->
 
-
    <script src="http://code.jquery.com/jquery-latest.js"></script>
 
-
    <script src="http://www.kyleharrison.co.uk/igem/js/bootstrap.min.js"></script>
 
 +
<h2>Sensors</h2>
-
    <script type="text/javascript">
+
</div>
-
      $("#tip").tooltip(); //call on the tooltip function and attach it to a tooltip id
+
</div>
-
    </script>
+
-
    <script language="Javascript" type="text/javascript" src="http://www.kyleharrison.co.uk/igem/js/jquery.blinds-0.9.js"></script>
+
<div class="row" style="text-align:justify">
 +
<div class="span10" style="padding-top:20px">
 +
<Strong>Light</strong><br><br>
 +
The sensors used to detect light were simple and cheap Light Dependent Resistors (LDRs). The specific LDRs used were Excelitas Tech – VT90N1. These light sensors were implemented in the moptopus in order to monitor the intensity of light falling on the lake on a day to day basis. <br></div>
-
    <script type="text/javascript">
+
<div class="span2" style="padding-top:20px">
-
          $(window).load(function () {
+
             <img id="image-6" src="https://static.igem.org/mediawiki/2013/thumb/5/5d/Dundee-Light.png/600px-Dundee-Light.png" style="height:100px">
-
             $('.slideshow').blinds();
+
</div><br><br>
-
        })
+
-
    </script>
+
-
  </body>
+
<div class="span10"style="padding-top:20px">
-
</html>
+
<Strong>Temperature and Humidity</strong><br><br>
 +
A combined temperature and humidity sensor was implemented to sense at the surface of the water with high accuracy. The sensor used was a SHT71, which provided temperature and humidity measurements to 2 decimal places. According to the datasheet for the sensor, the typical error present in these measurements was ±0.4% for temperature and ±3% for humidity.</div>
 +
<div class="span2"style="padding-top:20px" >
 +
            <img id="image-6" src="https://static.igem.org/mediawiki/2013/thumb/c/c9/Temperature.png/600px-Temperature.png" style="height:100px">
 +
</div><br><br>
 +
<div class="span10"style="padding-top:20px">
 +
<Strong>pH</strong><br><br>
 +
The pH of the fresh water is of significance when determining whether an algal bloom is likely to break out and also has implications on the toxicity of the algal bloom. The pH sensor used was a silver/silver chloride probe produced by Atlas Scientific. This was accompanied by a data stamp via which communication with the Arduino system was possible.<br></div>
-
      <!-- Begin page content -->
+
<div class="span2"style="padding-top:20px">
-
      <div class="container">
+
            <img id="image-6" src="https://static.igem.org/mediawiki/2013/thumb/3/3b/PH.png/600px-PH.png" style="height:100px">
 +
</div><br><br>
 +
<div class="span10"style="padding-top:20px">
 +
<Strong>Dissolved Oxygen</strong><br><br>
 +
The dissolved oxygen concentration of a water body is significant in determining whether algal bacteria can grow in an explosive manner. Furthermore, it can also help detect the breakdown of cyanobacteria after an algal bloom. Thus, a dissolved oxygen sensor and accompanying stamp by Atlas Scientific was implemented and built into the Moptopus.<br></div>
 +
<div class="span2"style="padding-top:20px">
 +
            <img id="image-6" src="https://static.igem.org/mediawiki/2013/thumb/9/95/DissolvedOxygen.png/600px-DissolvedOxygen.png" style="height:100px">
 +
</div><br><br>
 +
<div class="span10"style="padding-top:20px">
 +
<Strong>Onboard camera</strong><br><br>
 +
The Moptopus was fitted with an onboard camera in order to view its surroundings. The camera selected was a Logitech C310 HD and this was mounted on the top of the Moptopus. By allowing a user to view the surroundings of the Moptopus, the conditions of the lake at any time can be viewed. The potential for such viewings would be to allow the monitoring of aspects such as the amount of waste rubbish which has been discarded into the water reservoir. Such waste can provide cyanobacteria with nutrients required for growth. Furthermore, should an algal bloom occur viewing of the site could allow for a monitoring of the growth pattern of the algae and in such a fashion be informative to potential action to reduce the likelihood of future algal blooms.<br></div>
 +
<div class="span2"style="padding-top:20px">
 +
            <img id="image-6" src="https://static.igem.org/mediawiki/2013/thumb/e/e3/Microscope2IconBackground.png/600px-Microscope2IconBackground.png" style="height:100px">
 +
</div><br><br>
-
      <!-- Title -->
+
</div>
-
      <div class="page-header">
+
-
          <h2><b>Insight to the Mop-topus and Toxi-Tweet</b> </h2>
+
-
        </div>
+
-
      <!-- Title End -->
+
-
      <div class="row" style="text-align:justify;margin-top:-20px;">
+
<div class="row" style="text-align:justify">
-
        <div class="span12">
+
<div class="span12"><h2> Testing the Moptopus in Clatto</h2>
-
          <h2>Aims:</h2>
+
-
          <p>Using mathematical tools to allow us to predict the limiting factors in the production of PP1 and its mopping applications. Working alongside the biologists to produce models which are relevant and can predict what is expected to happen during the synthetic engineering of the mop and detection bacteria.</p>
+
-
        </div>
+
 +
<p>A prototype of the Moptopus was finalised and tested in Clatto reservoir, just north of Dundee. This test demonstrated the viability of deploying such a system and displayed its operational use. There were several testing stages in the course of development, some of which are shown below.<br><br>
-
        <div class="span6">
+
Initially, all of the hardware and software components of the Moptopus were developed and tested in the lab with no exposure to water. This initial, somewhat disorganised, setup was required to ensure that all of the hardware parts functioned as required and could be implemented together.<br><br>
-
        </div>
+
</p>
-
      </div><!-- Row End -->
+
</div>
 +
</div>
-
            <div class="row" style="text-align:justify">
+
<div class="row" style="text-align:justify">
-
        <div class="span6">
+
<div class="span12">
-
          <h2>Development of Moptopus:</h2>
+
<p>The next step in development was the packaging of the Moptopus into a waterproof enclosure built to protect the electronics from any water damage. This involved a great deal of space management in dealing with the number of wires which were required to connect the device to its parts. We selected a lunch box  as the optimal enclosure, because of its size and watertight seal. </p>
-
          <p> The current method for detecting toxic levels of microcystin is to take a sample of water from different regions of the site being investigated and then to carry out high performance liquid chromatography (HPLC). This process currently takes approximately 24 hours, we hope to reduce this to a more suitable 1 hour.</p><br>
+
</div>
-
          <p>Assuming the cyanobacteria undergo binary fission and grow unbounded we were able to determine how the problem increases over 24 hours in comparison to 1 hour detection.
+
-
          where MC(t) is the number of microcystin at time t b0 is the initial number of algae</p><br>
+
-
          <p>The ratio for time t=24:1 is 8.4million:1. To put this into perspective this is the same as the height of the empire state building compared with the length of 7 E.coli bacterium. This model therefore emphasises that the 1 hour detection period is much more efficient and worth pursuing.</p>
+
-
        </div>
+
-
          <div class="span6" style="margin-top:60px;">
+
<div class="span12">
-
+
<p>After testing the Moptopus in an environment free from the danger of water, a local test of the waterproof enclosure was required. Naturally, the most obvious progression was to take the Moptopus for a bath!</p><br><br>
-
            <img id="image-6" src="http://placehold.it/600x300/8066DB/000000&text=Mop-topus">
+
</div>
-
          </div><br>
+
</div>
-
      </div><!-- Row End -->
+
<div class="row" style="text-align:justify">
 +
<div class="span6">
 +
<center><img src="https://static.igem.org/mediawiki/2013/thumb/7/7c/Moptopus_2.JPG/800px-Moptopus_2.JPG" width="100%"></img</center>
 +
<center>
 +
<p><strong>Figure 2:</strong> Moptopus circuitry inside enclosure.</p>
 +
</center>
-
        <div class="row" style="text-align:justify">
+
</div>
-
        <div class="span6">
 
-
        <h2>The Toxi-Tweet System:</h2>
+
<div class="span6">
-
        <p>We considered different limiting factors of our mop bacteria.  The factor discussed in this section is the maximum number of PP1 which can fit either on the surface of B.subtilis, or in the periplasm of E.coli.  We considered the volumes of the bacteria and PP1 and used a cube approximation that took into account volume which was wasted, in packing, by the spherical shape of the protein. For this model we assumed there were no other surface proteins and protein production was not limited by any factors.</p><br>
+
<center><img src="https://static.igem.org/mediawiki/2013/thumb/f/f1/Moptopus_3.JPG/800px-Moptopus_3.JPG" width="100%"></img</center>
-
       
+
-
        <p>Calculations show the maximum number of PP1 which can fit on the surface of B.subtilis is between 60 000 -70 000. From the average we can calculate that the number of bacterial mops required to clean a toxic level of microcystin in a litre of water is 1.40x1010.</p><br>
+
-
       
+
-
        <p>In E.coli, PP1 which would bind microcystin is free-flowing in the periplasm. The volume of the periplasm is much greater than the surface of B.subtilis. Therefore E.coli has the capacitive potential to be a more efficient mop. The maximum number of PP1 which can be packed into the periplasm is between 150 000 -200 000. Consequently, less bacterial mops are required to clean the same level of microcystin: 0.52x1010.</p><br>
+
-
       
+
-
        <p>When we have accurate numbers from the biology team on how many PP1 are attached to the surface or in the periplasm for B.subtilis and E.coli respectively, we can compare these numbers and compute the efficiency of our PP1 expressing bacteria.</p><br>
+
-
        <h2>Progress and Future Plans </h2><br>
+
<center>
-
        <p>An Ordinary Differential Equation (ODE) uses a function f(t) to describe how the output changes as a result of changing the input dx(t)/dt. For example how PP1 concentration changes with time in a single cell. In order to model transcription and translation of PP1 we used a system of ODEs , which is more than one ODE where the outputs are coupled.</p><br>
+
<p><strong>Figure 3:</strong> Deployment and testing in aquatic environment.</p>
 +
</center>
-
        <p>We used law of mass action to obtain a system of ODEs to describe the production of mRNA to PP1. mRNA and PP1 are coupled in the sense we need mRNA before we can produce any PP1. Also, the mRNA is not used up. We also took into consideration the degradation rates of mRNA and PP1 which are denoted as .</p><br>
+
</div>
 +
 +
<div class="span12">
 +
<Br><Br><p>Finally, the Moptopus was ready to be deployed in the Clatto reservoir and to be tested in its intended environment. Data from the Moptopus was streamed back to a laptop by the shore and measurements from the array of sensors were taken.</p><br><br>
 +
</div>
-
        <ul>
+
<div class="span6">
-
        <li>k1 – rate mRNA production - 4.98x10-9</li>
+
<center><img src="https://static.igem.org/mediawiki/2013/a/ac/Moptopus.jpg" width="100%"></img</center>
-
        <li>kd1 – rate mRNA degradation – 1x10-2</li>
+
<center>
-
        <li>k2 – rate PP1 production – 4x10-2</li>
+
<p><strong>Figure 4:</strong> Deployment in Clatto Reservoir.</p>
-
        <li>kd2 – rate PP1 degradation – 4x10-4</li>
+
</center>
-
        </ul>
+
-
        </div>
+
 +
</div>
-
          <div class="span6" style="margin-top:60px;">
 
-
            <img id="image-6" src="http://placehold.it/600x300/8066DB/000000&text=Figure 1">
 
-
          </div><br>
 
-
          <div class="span6" >
 
-
        <br> <p><i><b>Figure 1.</b> How mRNA and PP1 are produced over 20 minute cell division time. Note scaling on PP1 compared to mRNA.</i></p><br>
 
-
          </div>
 
-
          <div class="span6">
+
<div class="span6">
-
            <img id="image-6" src="http://placehold.it/600x300/8066DB/000000&text=Figure 2">
+
<center><img src="https://static.igem.org/mediawiki/2013/e/e6/Moptopus2.jpg" width="100%"></img</center>
-
          </div><br><br>
+
-
          <div class="span6">
+
<center>
-
          <p><br><i>Figure 2. A steady state is when the quantities describing a system are independent of time – they reach an equilibrium i.e dx/dt = 0. The steady state for (mRNA, PP1) is (0.04, 0.04) corresponding to a non-dimensionalised system. This plot demonstrates that during a 20 minute cell division period mRNA reaches the steady state but PP1 does not.</i></p><br>
+
<p><strong>Figure 5:</strong> Uploading data by the dock.</p>
-
        </div>
+
</center>
-
 
+
</div>
-
          <div class="span6">
+
</div>
-
            <img id="image-6" src="http://placehold.it/600x300/8066DB/000000&text=Figure 3">
+
-
          </div><br>
+
-
 
+
-
        <div class="span6">
+
-
        <br><p><i>Figure 3. This plot shows that given a time longer than cell division time both the mRNA and PP1 eventually reach their steady states.</i></p><br>
+
-
        </div>
+
-
 
+
-
      </div><!-- Row End -->
+
 +
<div class="row">
 +
<div class="span12">
 +
<h2> Moptopus in Action!</h2></div><br><br><br><br>
 +
<center><iframe width="900" height="680"
 +
  src="//www.youtube.com/embed/iENw4ICv1SI" frameborder="0" allowfullscreen></iframe></center>
 +
</div>
 +
</div>
 +
     
       <div id="push"></div>
       <div id="push"></div>
     </div>
     </div>

Latest revision as of 17:12, 27 October 2013

iGEM Dundee 2013 · ToxiMop

The Moptopus is an electronic environmental sensor, developed to collect and relay real-time data from water reservoirs. The device could be placed in a water body to measure:

  • Light Levels
  • Temperature
  • Humidity
  • pH level of the water
  • Dissolved oxygen level
  • An on-board camera

The Moptopus device could be used in conjunction with the biological microcystin detection system that we attempted to develop. Presence of microcystin in water would trigger the production of Green Fluorescence Protein (GFP) by the E. coli detector. The Moptopus has been designed to quantify the amount of GFP produced by the excitation of GFP via a blue light and the capture of fluorescence emitted via a highly green light sensitive photodiode.

Figure 1: Prototype design of the Moptopus

Important Guidelines

To ensure adequate monitoring of water bodies and the presence of toxic algal blooms, guidelines developed by relevant agencies (such as World Health Organization and United States Environmental Protection Agency among other) were analysed.

Keeping the guidelines below in mind, readings taken remotely by the moptopus can be used to aid in the rapid identification of water bodies susceptible to algal blooms and more specifically to toxic algal blooms.

  • Blooms are most expected to occur in late summer/early autumn and are most common in water bodies which are eutrophic or hypereutrophicWHO. Temperatures around 32oC correspond to the greatest growth rate. AJOL
  • Water temperatures between 15oC and 30oC and pH levels between 6 and 9,with adequate levels of nutrients, are required for the persistence of an algal bloom WHO
  • The optimal temperature for toxin production in cyanobacteria is between 20oC and 25oC.WHO Greatest toxicity has been recorded at temperatures of approximately 20oC.AJOL
  • Water temperatures greater than 25oC have proven advantageous for the growth of harmful algae when competing with non-harmful algae which grow faster than other non-harmful algae (specifically shown for Microcystis Aeruginosa). This advantage increases the likelihood of harmful algal blooms above this temperature.EPA
  • The optimal growth rate of Microcystis Aeruginosa occurs at light levels between 3600 and 18000 lux. Light levels greater than 18000 lux result in a rapid decline in the growth rate. AJOL, White light intensity over 40 microeinsteins m-2 s-1 (equivalent to approx. 2160 lux) results in an increase in toxicity of cyanobacteria.WHO
  • In terms of growth rate, However, in terms of toxicity the greatest cyanobacteria growth rate does not directly correspond to greatest toxicity.
  • Hypoxia (a decrease in oxygen content in the water body) is often caused by algal blooms. This occurs when the organic matter of cyanobacteria decomposes and reduces oxygen dissolved in the water.NOAA

Sources

WHO: http://www.who.int/water_sanitation_health/dwq/chemicals/cyanobactoxins.pdf
EPA: http://www2.epa.gov/sites/production/files/documents/climatehabs.pdf
AJOL: http://www.ajol.info/index.php/ajb/article/download/14935/61493
NOAA: http://www.noaa.gov/features/earthobs_0508/algal.html

Platforms and Communication

In order to use the sensors and detectors mentioned above, the Moptopus was created using two main control boards: the Raspberry Pi (Model B) and an Arduino (Mega 2560).







A Raspberry Pi (http://www.raspberrypi.org) is a low cost, low power computer system which can fit in the palm of your hand. It has no onboard storage and instead runs various distributions of linux via insert-able SD Cards. The Raspberry Pi was chosen for our project due to its low cost and power requirements and the ability to easily program on it.
We implemented a Raspberry Pi as the control centre of the Moptopus. It carries out some information processing and controls the flow of information to any users. It is able to connect to the internet and allow a user to control the Moptopus while in operation. Our Raspberry Pi runs the Rasbian operating system (http://www.raspbian.org). .

An Arduino (http://www.arduino.cc) is a cheap microcontroller, able to control and read voltages from metal pins which are connected to it. The digital and analogue input/output pins on our Arduino Mega have been used to control modules such as an LCD screen, light sensors, temperature sensors and the dissolved oxygen and pH sensors. .

A number of methods of communication between the Raspberry Pi, Arduino and internet have been used. The Raspberry Pi is able to request data from a specific sensor by use of some of its own onboard pins. The configuration we used is called an I2C bus which is a serial communication method requiring just two pins on the Raspberry Pi and Arduino to communicate. Using this I2C bus, the Raspberry Pi asks the Arduino to take a specific measurement using one of the sensors. .
The Arduino is also equipped with an Ethernet shield allowing it to be connected to the Ethernet port aboard the Raspberry Pi. This allows the streaming of data from the Arduino to the Pi. Finally, the Raspberry Pi has an added USB Wi-Fi device for connection to a local wireless network. This allows the Raspberry Pi to be communicated with and remotely logged into.

Sensors

Light

The sensors used to detect light were simple and cheap Light Dependent Resistors (LDRs). The specific LDRs used were Excelitas Tech – VT90N1. These light sensors were implemented in the moptopus in order to monitor the intensity of light falling on the lake on a day to day basis.


Temperature and Humidity

A combined temperature and humidity sensor was implemented to sense at the surface of the water with high accuracy. The sensor used was a SHT71, which provided temperature and humidity measurements to 2 decimal places. According to the datasheet for the sensor, the typical error present in these measurements was ±0.4% for temperature and ±3% for humidity.


pH

The pH of the fresh water is of significance when determining whether an algal bloom is likely to break out and also has implications on the toxicity of the algal bloom. The pH sensor used was a silver/silver chloride probe produced by Atlas Scientific. This was accompanied by a data stamp via which communication with the Arduino system was possible.


Dissolved Oxygen

The dissolved oxygen concentration of a water body is significant in determining whether algal bacteria can grow in an explosive manner. Furthermore, it can also help detect the breakdown of cyanobacteria after an algal bloom. Thus, a dissolved oxygen sensor and accompanying stamp by Atlas Scientific was implemented and built into the Moptopus.


Onboard camera

The Moptopus was fitted with an onboard camera in order to view its surroundings. The camera selected was a Logitech C310 HD and this was mounted on the top of the Moptopus. By allowing a user to view the surroundings of the Moptopus, the conditions of the lake at any time can be viewed. The potential for such viewings would be to allow the monitoring of aspects such as the amount of waste rubbish which has been discarded into the water reservoir. Such waste can provide cyanobacteria with nutrients required for growth. Furthermore, should an algal bloom occur viewing of the site could allow for a monitoring of the growth pattern of the algae and in such a fashion be informative to potential action to reduce the likelihood of future algal blooms.


Testing the Moptopus in Clatto

A prototype of the Moptopus was finalised and tested in Clatto reservoir, just north of Dundee. This test demonstrated the viability of deploying such a system and displayed its operational use. There were several testing stages in the course of development, some of which are shown below.

Initially, all of the hardware and software components of the Moptopus were developed and tested in the lab with no exposure to water. This initial, somewhat disorganised, setup was required to ensure that all of the hardware parts functioned as required and could be implemented together.

The next step in development was the packaging of the Moptopus into a waterproof enclosure built to protect the electronics from any water damage. This involved a great deal of space management in dealing with the number of wires which were required to connect the device to its parts. We selected a lunch box as the optimal enclosure, because of its size and watertight seal.

After testing the Moptopus in an environment free from the danger of water, a local test of the waterproof enclosure was required. Naturally, the most obvious progression was to take the Moptopus for a bath!



Figure 2: Moptopus circuitry inside enclosure.

Figure 3: Deployment and testing in aquatic environment.



Finally, the Moptopus was ready to be deployed in the Clatto reservoir and to be tested in its intended environment. Data from the Moptopus was streamed back to a laptop by the shore and measurements from the array of sensors were taken.



Figure 4: Deployment in Clatto Reservoir.

Figure 5: Uploading data by the dock.

Moptopus in Action!