Uiuce bus model

From 2013.igem.org

(Difference between revisions)
Line 439: Line 439:
   <li class="nav-header">PROJECT</li>
   <li class="nav-header">PROJECT</li>
   <li class="">
   <li class="">
-
       <a href="#Overview">Project Overview</a>
+
       <a href="#Competitive Analysis">Competitie Analysis</a>
       <ul class="nav">
       <ul class="nav">
       </ul>
       </ul>
Line 445: Line 445:
   <li class="">
   <li class="">
-
       <a href="#Results">Results</a>
+
       <a href="#Market Penetration Strategy">Market Penetration Strategy</a>
       <ul class="nav">
       <ul class="nav">
         <li><a href="#1,SDS-PAGE">1,SDS-PAGE</a></li>
         <li><a href="#1,SDS-PAGE">1,SDS-PAGE</a></li>
Line 455: Line 455:
   <li class="">
   <li class="">
-
       <a href="#Future">Future</a>
+
       <a href="#Marketing Plan">Marketing Plan</a>
       <ul class="nav">
       <ul class="nav">
       </ul>
       </ul>
Line 462: Line 462:
   </ul>
   </ul>
   </div>
   </div>
-
<div id="Overview" style="margin-top:-50px; padding-top:50px;" >
+
<div id="Competitive Analysis" style="margin-top:-50px; padding-top:50px;" >
-
<h2>Project Overview</h2>
+
<h2>Competitive Analysis</h2>
<p>We are trying to construct a novel E.coli that has fruity flavor like Japanese rice wine (Japanese sake). In order to accomplish the purpose, yeast genes related with production of the Japanese sake fragrance were introduced into E. coli cells. We also tried to develop a way to eliminate bad smells of E. coli in parallel. Although we previously won a gold prize by the development of a novel pen (E. coli Pen) in 2010, its bad smells were weak points and must be improved. We will overcome this problem through the progress of our new project in 2013. So far, “smell” is not a popular keyword and not a major field in iGEM. However, we believe that our project will provide a new point of view to iGEM friends.</p>
<p>We are trying to construct a novel E.coli that has fruity flavor like Japanese rice wine (Japanese sake). In order to accomplish the purpose, yeast genes related with production of the Japanese sake fragrance were introduced into E. coli cells. We also tried to develop a way to eliminate bad smells of E. coli in parallel. Although we previously won a gold prize by the development of a novel pen (E. coli Pen) in 2010, its bad smells were weak points and must be improved. We will overcome this problem through the progress of our new project in 2013. So far, “smell” is not a popular keyword and not a major field in iGEM. However, we believe that our project will provide a new point of view to iGEM friends.</p>
</div>
</div>
-
<div id="Results" style="margin-top:-50px; padding-top:50px;">
+
<div id="Market Penetration Strategy" style="margin-top:-50px; padding-top:50px;">
-
<h2>Results</h2>
+
<h2>Market Penetration Strategys</h2>
<h3 id="1,SDS-PAGE" style="margin-top:-70px; padding-top:70px;" >
<h3 id="1,SDS-PAGE" style="margin-top:-70px; padding-top:70px;" >

Revision as of 22:28, 27 October 2013

Competitive Analysis


Text about Comp An here

Competitive Analysis

We are trying to construct a novel E.coli that has fruity flavor like Japanese rice wine (Japanese sake). In order to accomplish the purpose, yeast genes related with production of the Japanese sake fragrance were introduced into E. coli cells. We also tried to develop a way to eliminate bad smells of E. coli in parallel. Although we previously won a gold prize by the development of a novel pen (E. coli Pen) in 2010, its bad smells were weak points and must be improved. We will overcome this problem through the progress of our new project in 2013. So far, “smell” is not a popular keyword and not a major field in iGEM. However, we believe that our project will provide a new point of view to iGEM friends.

Market Penetration Strategys

1,SDS-PAGE

We constructed ATF2 generator. (BBa_K1049002) Our team KIT-Kyoto 2013 constructed this part for the purpose of measurement. T7 promoter is an IPTG-inducible promoter. We added 20µL IPTG (100mM) to our genetically modified E.coli after cultivation at 28 and 37 ˚C. 2 hours after, we extracted soluble proteins from it by FastBreak™ Cell Lysis Reagent and did SDS-polyacrylamide gel electrophoresis.


ATF2 gene encodes AATase, which is about 62kDa. The consumption of protein marker is like this.

Myosin 200kDa β‐Galactosidase 120kDa Bovine Serum Albumin 95kDa Glutamine dehydrogenase 68kDa Ovalbumin 50kDa Carbonic Anhydrase 36kDa Myoglobin 27kDa Lysozyme 20kDa Aprotinin 10kDa

You can find the band at lanes which are added IPTG just beneath the band of 68kDa.


2,Growth curves

We measured the turbidities of the transformants every 2 hour and made the growth curves. We transferred the transformant prepared to 100 mL flasks and add 660uL IPTG and 108uL isoamyl alcohol to them after 2 hours of the start. We measured the turbidities every 2 hour. The measurements were carried out for 12 hours.

LB 100mL

ampicillin 150uL

sample 50uL

IPTG 660uL

isoamyl alcohol 108uL

37°C, 125/min

In addition, we measured the turbidities of the transformants without adding IPTG and isoamyl alcohol too. We measured 4 samples; ATF2-pET-15b, ATF2-pET-15b + IPTG, empty pET-15b, empty pET-15b + IPTG.

As the result, ATF2-pET-15b transformants grow well relative to control(transformants having empty pET-15b vector). We propose the folllowing hypothesis. Isoamyl acetate indicates a stimulatory effect of growth on E.coli cells when compared to isoamyl alcohol so that transformants having ATF2-pET-15b grow well relative to control.

And ATF2-pET-15b without IPTG grow well relative to ATF2-pET-15b add IPTG. It is explained by the following hypothesis. When we add IPTG to the transformant having ATF2-pET-15b, ATF2 protein (AATase) is expessed in bulk in the transformant. A massive amount of AATase has a potential to surpress the growth.

3, Bioassay using Drosophila

Next, to confirm the activity of AATase, we added isoamyl alcohol after IPTG induction and cultivated for about 2 hours. We used E. coli cells carrying the empty vector (pET-15b) as a control and compare it with the E.coli cells carrying pET15b-ATF2 after addition of isoamyl alcohol. To compare the production of isoamyl acetate, we carried out a bioassay using Drosophila. Because Drosophila favors the fruit odor like isoamyl acetate. [1]

After the addition of IPTG and isoamyl acetate, the culture was impregnated into the filter and placed in a case containing 10 Drosophilas. We monitored the behavior of Drosophila. This is the result. For 1 hour, 7 flies gathered to the ATF2. These results clearly indicate that ATF2 produces isoamyl acetate from isoamyl alcohol.

This is the result. For 1 hour, 7 flies gathered to the ATF2. These results clearly indicate that ATF2 produces isoamyl acetate from isoamyl alcohol.



4,The comparing with the ability of ATF1 and ATF2

In addition, according to the previous study [2], the ability of ATF2 protein to produce isoamyl acetate in yeast is higher than that of ATF1 protein.

It is known that both ATF1 and ATF2 protein are involved in producing isoamyl acetate.

In 2006, MIT iGEM team submitted ATF1 coding sequence. (BBa_J45006) Our new part, ATF2 coding sequence, fall under the category of the improvement of function existing BioBrick Part, BBa_J45006. Herewith, our team, KIT-Kyoto 2013 iGEM team, meets the additional requirements for a Gold Medal.